Skip to main content

Platelet Adhesion Assays Under Flow Using Matrix Protein-Coupled Adhesion Columns

  • Protocol
Platelets and Megakaryocytes

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 272))

  • 2604 Accesses

Abstract

The primary step in hemostasis after vascular injury is generally considered to be the adherence of circulating platelets to collagen exposed in the subendothelial connective tissues (1,2). Such platelet adhesion is essential to limit bleeding and maintain blood vessel integrity. This process must occur extremely rapidly and involves a cascade of events including the initial platelet adhesion to the collagen surface and stabilization of the platelet-collagen bond, followed by spreading, activation of the glycoprotein (GP) IIb-IIIa fibrinogen receptor, and release of platelet granule contents. Platelet-platelet interactions then occur by platelet recruitment from the plasma, leading to the buildup of thrombi on the initial monolayer of adherent platelets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baumgartner, H. R. (1973) The role of blood flow in platelet adhesion, fibrin deposition, and formation of mural thrombi. Microvasc. Res. 5, 167–179.

    Article  PubMed  CAS  Google Scholar 

  2. Baumgartner, H. R. (1977). Platelet interaction with collagen fibrils in flowing blood. I. Reaction of human platelets with alpha chymotrypsin-digested subendothelium. Thromb. Haemost. 37, 1–16.

    PubMed  CAS  Google Scholar 

  3. Ruckenstein, E., Marmur, A., and Rakower, S. R. (1976) Sedimentation and adhesion of platelets onto a horizontal glass surface. Thromb. Haemost. 36, 334–342.

    PubMed  CAS  Google Scholar 

  4. Baumgartner, H. R., Stemerman, M. B., and Spaet, T. H. (1971) Adhesion of blood platelets to subendothelial surface: distinct from adhesion to collagen. Experientia 27, 283–285.

    Article  PubMed  CAS  Google Scholar 

  5. Turitto, V. T. and Baumgartner, H. R. (1975) Platelet interaction with subendothelium in a perfusion system: physical role of red blood cells. Microvasc. Res. 9, 335–344.

    Article  PubMed  CAS  Google Scholar 

  6. Badimon, L., Turitto, V., Rosemark, J. A., Badimon, J. J., and Fuster, V. (1987) Characterization of a tubular flow chamber for studying platelet interaction with biologic and prosthetic materials: deposition of indium 111-labeled platelets on collagen, subendothelium, and expanded polytetrafluoroethylene. J. Lab. Clin. Med. 110, 706–718.

    PubMed  CAS  Google Scholar 

  7. Sakariassen, K. S., Aarts, P. A., de Groot, P. G., Houdijk, W. P., and Sixma, J. J. (1983) A perfusion chamber developed to investigate platelet interaction in flowing blood with human vessel wall cells, their extracellular matrix, and purified components. J. Lab. Clin. Med. 102, 522–535.

    PubMed  CAS  Google Scholar 

  8. Sakariassen, K. S., Muggli, R., and Baumgartner, H. R. (1989) Measurements of platelet interaction with components of the vessel wall in flowing blood. Methods Enzymol. 169, 37–70.

    Article  PubMed  CAS  Google Scholar 

  9. Hellem, A. J. (1970) Platelet adhesiveness in von Willebrand’s disease. A study with a new modification of the glass bead filter method. Scand. J. Haematol. 7, 374–382.

    PubMed  CAS  Google Scholar 

  10. Lindon, J. N., Rodvien, R., Brier, D., Greenberg, R., Merrill, E., and Salzman, E. W. (1978) In vitro assessment of interaction of blood with model surfaces. J. Lab. Clin. Med. 92, 904–915.

    PubMed  CAS  Google Scholar 

  11. Lindon, J. N., Kushner, L., and Salzman, E. W. (1989) Platelet interaction with artificial surfaces: in vitro evaluation. Methods Enzymol. 169, 104–117.

    Article  PubMed  CAS  Google Scholar 

  12. Santoro, S. A. and Cunningham, L. W. (1982) Platelet-collagen adhesion. Methods Enzymol. 82, 509–513.

    Article  PubMed  CAS  Google Scholar 

  13. Brass, L. F., Faile, D., and Bensusan, H. B. (1976) Direct measurement of the platelet collagen interaction by affinity chromatography on collagen/sepharose. J. Lab. Clin. Med. 87, 525–534.

    PubMed  CAS  Google Scholar 

  14. Cowan, D. H., Robertson, A. L., Shook, P., and Giroski, P. (1981) Platelet adherence to collagen: role of plasma, ADP, and divalent cations. Br. J. Haematol. 47, 257–267.

    Article  PubMed  CAS  Google Scholar 

  15. Gear, A. R. (1982) Rapid reactions of platelets studied by a quenched-flow approach: aggregation kinetics. J. Lab. Clin. Med. 100, 866–886.

    PubMed  CAS  Google Scholar 

  16. mnPolanowska Grabowska, R. and Gear, A. R. (1992) High-speed platelet adhesion under conditions of rapid flow. Proc. Natl. Acad. Sci. USA 89, 5754–5758.

    Google Scholar 

  17. Haver, V. M. and Gear, A. R. (1981) Functional fractionation of platelets. J. Lab. Clin. Med. 97, 187–204.

    PubMed  CAS  Google Scholar 

  18. Gear, A. R. (1984) Rapid platelet morphological changes visualized by scanning-electron microscopy: kinetics derived from a quenched-flow approach. Br. J. Haematol. 56, 387–398.

    Article  PubMed  CAS  Google Scholar 

  19. Gear, A. R. (1976) Continuous-flow, resistive-particle counting. Anal. Biochem. 72, 332–345.

    Article  PubMed  CAS  Google Scholar 

  20. mnPolanowska Grabowska, R., Geanacopoulos, M., and Gear, A. R. (1993) Platelet adhesion to collagen via the alpha 2 beta 1 integrin under arterial flow conditions causes rapid tyrosine phosphorylation of pp125FAK. Biochem. J. 296, 543–547.

    Google Scholar 

  21. Geanacopoulos, M. and Gear, A. R. (1988) Application of spray-freezing to the study of rapid platelet reactions by a quenched-flow approach. Thromb. Res. 52, 599–607.

    Article  PubMed  CAS  Google Scholar 

  22. Frojmovic, M. M., Milton, J. G., and Gear, A. L. (1989) Platelet aggregation measured in vitro by microscopic and electronic particle counting. Methods Enzymol. 169, 134–149.

    Article  PubMed  CAS  Google Scholar 

  23. Jones, G. D. and Gear, A. R. (1990) Rapid blood platelet activation: continuous-and quenched-flow versus stopped-flow approaches [letter]. Biochem. J. 265, 305–307.

    PubMed  CAS  Google Scholar 

  24. Gear, A. R. and Raha, S. (1993) Calcium signalling and phosphoinositide metabolism in platelets: subsecond events revealed by quenched-flow techniques. Adv. Exp. Med. Biol. 344, 57–67.

    PubMed  CAS  Google Scholar 

  25. Raha, S., Jones, G. D., and Gear, A. R. (1993) Sub-second oscillations of inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate during platelet activation by ADP and thrombin: lack of correlation with calcium kinetics. Biochem J. 292, 643–646.

    PubMed  CAS  Google Scholar 

  26. mnPolanowska Grabowska, R. and Gear, A. R. (1994) Role of cyclic nucleotides in rapid platelet adhesion to collagen. Blood 83, 2508–2515.

    Google Scholar 

  27. Gear, A. R., Simon, C. G., and mnPolanowska Grabowska, R. (1997) Platelet adhesion to collagen activates a phosphoprotein complex of heat-shock proteins and protein phosphatase 1. J. Neural. Transm. 104, 1037–1047.

    Google Scholar 

  28. mnPolanowska Grabowska, R., Simon, C. G., Jr., Falchetto, R., Shabanowitz, J., Hunt, D. F., and Gear, A. R. (1997) Platelet adhesion to collagen under flow causes dissociation of a phosphoprotein complex of heat-shock proteins and protein phosphatase 1. Blood 90, 1516–1526.

    Google Scholar 

  29. mnPolanowska Grabowska, R. and Gear, A. R. (1999) Activation of protein kinase C is required for the stable attachment of adherent platelets to collagen but is not needed for the initial rapid adhesion under flow conditions. Arterioscler. Thromb. Vasc. Biol. 19, 3044–3054.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Polanowska-Grabowska, R., Gear, A.R.L. (2004). Platelet Adhesion Assays Under Flow Using Matrix Protein-Coupled Adhesion Columns. In: Gibbins, J.M., Mahaut-Smith, M.P. (eds) Platelets and Megakaryocytes. Methods In Molecular Biology™, vol 272. Humana Press. https://doi.org/10.1385/1-59259-782-3:153

Download citation

  • DOI: https://doi.org/10.1385/1-59259-782-3:153

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-101-1

  • Online ISBN: 978-1-59259-782-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics