Advertisement

Overview of Linkage Analysis

Application to Pancreatic Cancer
  • Alison P. Klein
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 103)

Abstract

Linkage analysis has aided in the identification of genes involved in many diseases, including several cancers. It relies on using family-based data to detect genetic loci that may harbor disease predisposing genes. Although linkage studies were first designed to find the genes responsible for simple Mendelian diseases (diseases caused by alterations in a single gene), today it is more common for investigators to use linkage analysis to locate genes involved in complex diseases (diseases caused by the independent and joint effects of multiple genes often in conjunction with environmental factors), such as pancreatic cancer. During the past decade linkage analysis has been key step in the identification of several cancer genes, including BRCA2 and STK11, which additional studies have shown also carry an increased risk of pancreatic cancer. However, these known genes explain very little of the observed familial aggregation of pancreatic cancer. While the foundations of linkage analysis are relatively straightforward, the actual implementation of linkage studies, especially for complex diseases such as pancreatic cancer, can be quite difficult. This chapter focuses on the basics of linkage analysis for qualitative traits (affected/unaffected) as could be applied to the study of pancreatic cancer.

Key Words

Pancreatic cancer linkage analysis LOD score identical-by-descent (IBD) genetic heterogeneity 

References

  1. 1.
    Wooster, R., Neuhausen, S. L., Mangion, J., et al. (1994) Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12-13. Science 265, 2088–2090.PubMedCrossRefGoogle Scholar
  2. 2.
    Hemminki, A., Tomlinson, I., Markie, D., et al. (1997) Localization of a susceptibility locus for Peutz-Jeghers syndrome to 19p using comparative genomic hybridization and targeted linkage analysis. Nat. Genet. 15, 87–90.PubMedCrossRefGoogle Scholar
  3. 3.
    Amos, C. I., Bali, D., Thiel, T. J., et al. (1997) Fine mapping of a genetic locus for Peutz-Jeghers syndrome on chromosome 19p. Cancer Res. 57, 3653–3656.PubMedGoogle Scholar
  4. 4.
    Goggins, M., Schutte, M., Lu, J., et al. (1996) Germline BRCA2 gene mutations in patients with apparently sporadic pancreatic carcinomas. Cancer Res. 56, 5360–5364.PubMedGoogle Scholar
  5. 5.
    Su, G. H., Hruban, R. H., Bansal, R. K., et al. (1999) Germline and somatic mutations of the STK11/LKB1 Peutz-Jeghers gene in pancreatic and biliary cancers. Am. J. Pathol. 154, 1835–1840.PubMedCrossRefGoogle Scholar
  6. 6.
    Eberle, M. A., Pfutzer, R., Pogue-Geile, K. L., et al. (2002) A new susceptibility locus for autosomal dominant pancreatic cancer maps to chromosome 4q32-34. Am. J. Hum. Genet. 70, 1044–1048.PubMedCrossRefGoogle Scholar
  7. 7.
    Klein, A. P., Hruban, R. H., Brune, K. A., Petersen, G M., and Goggins, M. (2001) Familial pancreatic cancer. Cancer J. 7, 266–273.PubMedGoogle Scholar
  8. 8.
    Douglas, J. A., Boehnke, M., and Lange, K. (2000) A multipoint method for detecting genotyping errors and mutations in sibling-pair linkage data. Am. J. Hum. Genet. 66, 1287–1297.PubMedCrossRefGoogle Scholar
  9. 9.
    Abecasis, G R., Cherny, S. S., and Cardon, L. R. (2001) The impact of genotyping error on family-based analysis of quantitative traits. Eur. J. Hum. Genet. 9, 130–134.PubMedCrossRefGoogle Scholar
  10. 10.
    Ott, J. (1999) Handbook of Human Genetic Linkage. Baltimore, MD: The Johns Hopkins University Press.Google Scholar
  11. 11.
    Morton, N. (1955) Sequential tests for the detection of linkage. Am. J. Hum. Genet. 7, 277–318.PubMedGoogle Scholar
  12. 12.
    Khoury, M. J., Beaty, T. H., and Cohen, H. (1993) Fundamentals of Genetic Epidemiology Baltimore, MD: The Johns Hopkins University Press.Google Scholar
  13. 13.
    Ott, J. (1974) Estimation of the recombination fraction in human pedigrees: Efficient computation of the likelihood for human linkage studies. Am. J. Hum. Genet. 26, 588–597.PubMedGoogle Scholar
  14. 14.
    Xu, J., Meyers, D., and Pericak-Vance, M. A. (1998) Lod score analysis, in Approaches to Gene Mapping in Complex Human Diseases (Pericak-Vance, M. A. and Haines, J. L., eds.), New York: Wiley-Liss, pp. 253–271.Google Scholar
  15. 15.
    Klein, A. P., Beaty, T. H., Bailey-Wilson, J. E., Brune, K. A., Hruban, R. H., and Petersen, G. M. (2002) Evidence for a major gene influencing risk of pancreatic cancer. Genet. Epidemiol. 23, 133–149.PubMedCrossRefGoogle Scholar
  16. 16.
    Clerget-Darpoux, F., Bonaiti-Pellie, C, and Hochez, J. (1986) Effects of mis-specifying genetic parameters in lod score analysis. Biometrics 42, 393–399.PubMedCrossRefGoogle Scholar
  17. 17.
    Whittemore, A. and Halpern, J. (2001) Problems in the definition, interpretation, and evaluation of genetic heterogeneity. Am. J. Hum. Genet. 68, 457–465.PubMedCrossRefGoogle Scholar
  18. 18.
    Hodge, S., Vieland, V., and Greenberg, D. (2002) HLODs remain powerful tools for detecting linkage in the presence of genetic heterogeneity. Am. J. Hum. Genet. 70, 556–559.PubMedCrossRefGoogle Scholar
  19. 19.
    Abreu, P., Hodge, S., and Greenberg, D. (2002) Quantification of type 1 error probabilities for heterogeneity lod scores. Genet. Epidemiol. 22, 156–169.PubMedCrossRefGoogle Scholar
  20. 20.
    Penrose, L. (1935) The detection of autosomal linkage in data which consist of pairs of brothers and sisters of unspecified parantage. Ann. Eugen. 18, 120–144.Google Scholar
  21. 21.
    Haseman, J. K. and Elston, R. C. (1972) The investigation of linkage between a quantitative trait and a marker locus. Behav. Genet. 2, 3–19.PubMedCrossRefGoogle Scholar
  22. 22.
    McPeek, M. S. (1999) Optimal allele-sharing statistics for genetic mapping using affected relatives. Genet. Epidemiol. 16, 225–249.PubMedCrossRefGoogle Scholar
  23. 23.
    Bishop, D. T. and Williamson, J. A. (1990) The power of identity-by-state methods for linkage analysis. Am. J. Hum. Genet. 46, 254–265.PubMedGoogle Scholar
  24. 24.
    Kruglyak, L., Daly, M. J., Reeve-Daly, M. P., and Lander, E. S. (1996) Parametric and nonparametric linkage analysis: A unified multipoint approach. Am. J. Hum. Genet. 58, 1347–1363.PubMedGoogle Scholar
  25. 25.
    Kong, A. and Cox, N. J. (1997) Allele-sharing models: LOD scores and accurate linkage tests. Am. J. Hum. Genet. 61, 1179–1188.PubMedCrossRefGoogle Scholar
  26. 26.
    Mandal, D. M., Sorant, A. J., Pugh, E. W., et al. (1999) Environmental covariates: Effects on the power of sib-pair linkage methods. Genet. Epidemiol. 17(Suppl. 1), S643–S648.PubMedGoogle Scholar
  27. 27.
    Lander, E. and Kruglyak, L. (1995) Genetic dissection of complex traits: Guidelines for interpreting and reporting linkage results. Nat. Genet. 11, 241–247.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Alison P. Klein
    • 1
  1. 1.Statistical Genetics Section, National Human Genome Research InstituteNational Institutes of HealthMD

Personalised recommendations