Advertisement

Development of a Cytokine-Modified Allogeneic Whole Cell Pancreatic Cancer Vaccine

  • Dan Laheru
  • Barbara Biedrzycki
  • Amy M. Thomas
  • Elizabeth M. Jaffee
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 103)

Abstract

The management of patients with pancreatic cancer is a multidisciplinary approach that presents enormous challenges to the clinician. Overall 5-yr survival for all patients remains <3%. Symptoms of early pancreas cancer are nonspecific. As such, only a fraction of patients are candidates for surgery. While surgical resection provides the only curative option, most patients will develop tumor recurrence and die of their disease. To date, the clinical benefits of chemotherapy and radiation therapy have been important but have led to modest improvements. Tumor vaccines have the potential to specifically target the needle of pancreas cancer cells amidst the haystack of normal tissue. The discovery of pancreas tumor-specific antigens and the subsequent ability to harness this technology has become an area of intense interest for tumor immunologists and clinicians alike. Without knowledge of specific antigen targets, the whole tumor cell represents the best source of immunizing antigens. This chapter will focus on the development of whole tumor cell vaccine strategies for pancreas cancer.

Key Words

Pancreas cancer immunotherapy tumor antigens genetically modified whole cell allogeneic vaccine 

References

  1. 1.
    Evans, D. B., Abbruzzese, J. L., and Rich, T. A. (1997) Cancer of the Pancreas, in Principles and Practice of Oncology, 5th ed. (DeVita, V. T., Hellman, S., and Rosenberg, S. A., eds.), Philadelphia: J. B. Lippincott, pp. 1054–1087.Google Scholar
  2. 2.
    Bastidas, J. A., Poen, J. C, and Niederhuber, J. E. (2000) Pancreas, in Clinical Oncology (Abeloff, M. D., Armitage, J. O., Lichter, A. S., and Niederhuber, J. E., eds.), Philadelphia: Churchill Livingstone, pp. 1749–1783.Google Scholar
  3. 3.
    Lillemoe, K. D., Yeo, C. J., and Cameron, J. L. (2000) Pancreatic cancer: state of the art care. CA Cancer J. Clin. 50, 241–268.PubMedCrossRefGoogle Scholar
  4. 4.
    Conlon, K. C, Klimstra, D. S., and Brennan, M. F. (1996) Long term survival after curative resection for pancreatic ductal adenocarcinoma. Ann. Surg. 223, 273–279.PubMedCrossRefGoogle Scholar
  5. 5.
    Yeo, C. J., Cameron, J. L., Sohn, T. A., et al. (1997) Six hundred fifty consecutive pancreaticoduodenectomies in the 1990s: Pathology, complications and outcomes. Ann. Surg. 226, 248–260.PubMedCrossRefGoogle Scholar
  6. 6.
    Sohn, T. A., Yeo, C. J., Cameron, J. L., et al. (2000) Resected adenocarcinoma of the pancreas-616 patients: Results, outcomes, and prognostic indicators. J. Gastrointest. Surg. 4, 567–579.PubMedCrossRefGoogle Scholar
  7. 7.
    Burris, H. A., Moore, M. J., Cripps, M. C, et al. (1997) Improvements in survival and clinical benefit with Gemcitabine as first-line therapy for patients with advanced pancreatic cancer: A randomized trial. J. Clin. Oncol. 15, 2403–2413.PubMedGoogle Scholar
  8. 8.
    McGinn, C. J. and Zalupski, M. M. (2001) Combined modality therapy in pancreatic cancer: Current status and future directions. Cancer J. 7, 338–348.PubMedGoogle Scholar
  9. 9.
    Lander, E. S., Linton, L. M., Birren, B., et al. (2001) Initial sequencing and analysis of the human genome. Nature 409, 860–921.PubMedCrossRefGoogle Scholar
  10. 10.
    Venter, J. C, Adams, M. D., Myers, E. W., et al. (2001) The sequence of the human genome. Science 291, 1304–1351.PubMedCrossRefGoogle Scholar
  11. 11.
    Velculescu, V. E., Zhang, L., Vogelstein, B., and Kinzler, K. W. (1995) Serial analysis of gene expression. Science 270, 484–487.PubMedCrossRefGoogle Scholar
  12. 12.
    Zhang, L., Zhou, W., Velculescu, V. E., et al. (1997) Genome expression profiles in normal and cancer cells. Science 276, 1268–1272.PubMedCrossRefGoogle Scholar
  13. 13.
    Lal, A., Lash, A. E., Altschul, S. F., et al. (1999) A public database for gene expression in human cancers. Cancer Res. 59, 5403–5407.PubMedGoogle Scholar
  14. 14.
    Lash, A. E., Tolstoshev, C. M., Wagner, L., et al. (2000) SAGEmap: A public gene expression resource. Genome Res. 10, 1051–1060.PubMedCrossRefGoogle Scholar
  15. 15.
    Iacobuzio-Donahue, C. A., Maitra, A., Shen-Ong, G L., et al. (2002) Discovery of novel tumor markers of pancreatic cancer using global gene expression technology. Am. J. Pathology 160, 1239–1249.CrossRefGoogle Scholar
  16. 16.
    Argani, P., Iacobuzio-Donahue, C, Ryu, B., et al. (2001) Mesothelin is over-expressed in the vast majority of ductal adenocarcinoma of the pancreas: Identification of a new pancreatic cancer marker by serial analysis of gene expression (SAGE). Clin. Cancer Res. 7, 3862–3868.PubMedGoogle Scholar
  17. 17.
    Ryu, B., Jones, J., Blades, N. J., et al. (2002) Relationships and differentially expressed genes among pancreatic cancers examined by large scale serial analysis of gene expression. Can. Res. 62, 819–826.Google Scholar
  18. 18.
    Argani, P., Rosty, C, Reiter, R. E., et al. (2001) Discovery of new markers of cancer through serial analysis of gene expression: Prostate stem cell antigen is overexpressed in pancreatic adenocarcinoma. Cancer Res. 61, 4320–4324.PubMedGoogle Scholar
  19. 19.
    Germain, R. N. (1986) Immunology: The ins and outs of antigen processing and presentation. Nature 322, 687–689.PubMedCrossRefGoogle Scholar
  20. 20.
    Steinman, R. M. (1991) The dendritic cell system and its role in immunogenicity. Annu. Rev. Immunol. 9, 271–296.PubMedCrossRefGoogle Scholar
  21. 21.
    Pieters, J. (2000) MHC class II restricted antigen processing and presentation. Adv. Immunol. 75, 159–208.PubMedCrossRefGoogle Scholar
  22. 22.
    Solheim, J. C. (1999) Class I MHC molecules: Assembly and antigen presentation. Immunol. Rev. 172, 11–19.PubMedCrossRefGoogle Scholar
  23. Hammerling, G J., Vogt, A. B., and Kropshofer, H. (1999) Antigen processing and presentation—towards the millennium. Immunol. Rev. 172, 5–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Pardoll, D. M. (2002) Spinning molecular immunology into successful immunotherapy. Nat. Rev. 2, 227–238.CrossRefGoogle Scholar
  25. 25.
    Chen, L., Ashe, S., Brady, W. A., et al. (1992) Costimulation of antitumor immunity by the B7 counterreceptor for the T lymphocyte molecules CD28 and CTLA-4. Cell 71, 1093–1102.PubMedCrossRefGoogle Scholar
  26. 26.
    Schwartz, R. H. (1992) Costimulation of T lymphocytes: The role of CD28, CTLA-4, and B7/BB1 in interleukin-2 production and immunotherapy. Cell 71, 1065–1068.PubMedCrossRefGoogle Scholar
  27. 27.
    Lechler, R., Aichinger, G., and Lightstone, L. (1996) The endogenous pathway of MHC class II antigen presentation. Immunol. Rev. 151, 51–79.PubMedCrossRefGoogle Scholar
  28. 28.
    Ostrand-Rosenberg, S. (1994) Tumor immunotherapy: The tumor cell as an antigen presenting cell. Curr. Opin. Immunol. 6, 722–727.PubMedCrossRefGoogle Scholar
  29. 29.
    Golumbek, P., Lazenby, A., Levitsky, H. I., et al. (1991) Treatment of established renal cancer by tumor cells engineered to secrete interleukin-4. Science 254, 713–716.PubMedCrossRefGoogle Scholar
  30. 30.
    Dranoff, G., Jaffee, E. M., Golumbek, P., et al. (1993) Vaccination with irradiated tumor cells engineered to secrete murine GM-CSF stimulates potent, specific and long lasting antitumor immunity. Proc. Natl. Acad. Sci. USA 90, 3539–3543.PubMedCrossRefGoogle Scholar
  31. 31.
    Nishihara, T., Sawada, T., Yamamoto, A., et al. (2000) Antibody-dependent cytotoxicity mediated by chimeric monoclonal antibody Nd2 and experimental immunotherapy for pancreatic cancer. Jpn. J. Cancer Res. 91, 817–824.PubMedGoogle Scholar
  32. 32.
    Bruns, C. J., Harbison, M. T., Davis, D. W., et al. (2000) Epidermal growth factor receptor blockade with C225 plus gemcitabine results in regression of human pancreatic carcinoma growing orthotopically in nude mice by antiangiogenic mechanisms. Clin. Cancer Res. 6, 1936–1948.PubMedGoogle Scholar
  33. 33.
    Green, M. C, Murray, J. L., and Hortobagyi, G N. (2000) Monoclonal antibody therapy for solid tumors. Cancer Treat. Rev. 26, 269–286.PubMedCrossRefGoogle Scholar
  34. 34.
    Tempero, M. (1998) Biologic therapy of gastrointestinal cancer. Cancer Treat. Res. 98, 227–237.PubMedGoogle Scholar
  35. 35.
    Foon, K. A., Yannelli, J., and Bhattacharya-Chatterjee, M. (1999) Colorectal cancer as a model for immunotherapy. Clin. Cancer Res. 5, 225–236.PubMedGoogle Scholar
  36. 36.
    Offringa, R., Vierboom, M. P., van der Burg, S. H., Erdile, L., and Melief, C. J. (2000) p53: A potential target antigen for immunotherapy of cancer. Ann. NY Acad. Sci. 910, 223–233.PubMedCrossRefGoogle Scholar
  37. 37.
    Abbruzzese, J. L. (2000) Molecular diagnosis of pancreatic and biliary cancer: Ready for broad implementation? Cancer J. 6, 282–284.PubMedGoogle Scholar
  38. 38.
    Saforafas, G H., Tsiotou, A. G, and Tsiotos, G G (2000) Molecular biology of pancreatic cancer; oncogenes, tumor suppressor genes, growth factors, and their receptors from a clinical perspective. Cancer Treat. Rev. 26, 29–52.CrossRefGoogle Scholar
  39. 39.
    Hruban, R. H., Wilentz, R. E., and Kern, S. E. (2000) Genetic progression in the pancreatic ducts. Am. J. Pathol. 156, 1821–1825.PubMedCrossRefGoogle Scholar
  40. 40.
    Hahn, S. A. and Kern, S. E. (1995) Molecular genetics of exocrine pancreatic neoplasms. Surg. Clin. North Am. 75, 857–869.PubMedGoogle Scholar
  41. 41.
    Bos, J. L. (1989) ras oncogenes in human cancer: A review. Cancer Res. 49, 4682–4689.PubMedGoogle Scholar
  42. 42.
    Flanders, T. Y. and Foulkes, W. D. (1996) Pancreatic adenocarcinoma: Epidemiology and genetics. J. Med. Genet. 33, 889–898.PubMedCrossRefGoogle Scholar
  43. 43.
    Hruban, R. H., Van Mansfeld, A. D., Offerhaus, G. J., et al. (1993) K-ras oncogene activation in adenocarcinoma of the pancreas. Am. J. Pathol. 143, 545–554.PubMedGoogle Scholar
  44. 44.
    Gjertsen, M. K., Bakka, A., Breivik, J., et al. (1995) Vaccination with mutant ras peptides and induction of T-cell responsiveness in pancreatic carcinoma patients carrying the corresponding ras mutation. Lancet 346, 1399–1400.PubMedCrossRefGoogle Scholar
  45. 45.
    Bergmann-Leitner, E. S., Kantor, J. A., Shupert, W. L., Schlom, J., and Abrams, S. I. (1998) Identification of a human CD8+ T lymphocyte neo-epitope created by a ras codon 12 mutation which is restricted by the HLA-A2 allele. Cell Immunol. 187, 103–116.PubMedCrossRefGoogle Scholar
  46. 46.
    Khleif, S. N., Abrams, S., Allegra, C, et al. (1997) The generation of CD4+ and CD8+ T cell responses from patients vaccinated with mutant ras peptides corresponding to the patient’s own ras mutation. Proc. ASCO 1566.Google Scholar
  47. 47.
    Wojtowicz, M. E., Hamilton, M. J., Bernstein, S., et al. (2000) Clinical trial of mutant ras peptide vaccination along with IL-2 or GM-CSF. Proc. ASCO 1818.Google Scholar
  48. 48.
    Gjertsen, M. K., Buanes, T., Rosseland, A. R., et al. (2001) Intradermal ras peptide vaccination with granulocyte-macrophage colony stimulating factor as adjuvant: Clinical and immunological responses in patients with pancreatic adenocarcinoma. Int. J. Cancer 92, 441–450.PubMedCrossRefGoogle Scholar
  49. 49.
    Wang, X. Y., Kaneko, Y., Repasky, E., and Subjeck, J. R. (2000) Heat shock proteins and cancer immunotherapy. Immunol. Invest. 29, 131–137.PubMedCrossRefGoogle Scholar
  50. 50.
    Janetzki, S., Blachere, N. E., and Srivastava, P. K. (1998) Generation of tumor specific cytotoxic T lymphocytes and memory T cells by immunization with tumor derived heat shock protein gp96. J. Immunother. 21, 269–276.PubMedCrossRefGoogle Scholar
  51. 51.
    Lewis, J. J., Janetzki, S., Livingston, P. O., et al. (1999) Pilot trial of vaccination with autologous tumor derived gp96 heat shock protein-peptide complex (HSPPC-96) in patients with resected pancreatic adenocarcinoma. Proc. ASCO 1687.Google Scholar
  52. 52.
    Finn, O. J., Jerome, K. R., Henderson, R. A., et al. (1995) MUC-1 epithelial tumor mucin-based immunity and vaccines. Immunol. Rev. 145, 61–89.PubMedCrossRefGoogle Scholar
  53. 53.
    Apostopopoulos, V. and McKenzie, I. F. (1994) Cellular mucins: Targets for immunotherapy. Crit. Rev. Immunol. 14, 293–309.Google Scholar
  54. 54.
    Mukherjee, P., Ginardi, A. R., Madsen, C. S., et al. (2000) Mice with spontaneous pancreatic cancer naturally develop MUC-1 specific CTLs that eradicate tumors when adoptively transferred. J. Immunol. 165, 3451–3460.PubMedGoogle Scholar
  55. 55.
    Brossart, P., Heinrich, K., and Stuhler, G (1999) Identification of HLA-A2 restricted T cell epitopes derived from the MUC-1 tumor antigen for broadly applicable vaccine therapies. Blood 12, 4309–4317.Google Scholar
  56. 56.
    Ramanathan, R. K., Lee, K., Mckolanis, J., et al. (2000) Phase I study of a MUC-1 synthetic vaccine admixed with SB-AS2 adjuvant in resected and locally advanced pancreatic cancer. Proc. ASCO 1791.Google Scholar
  57. 57.
    Hammarstrom, S. (1999) The carcinoembryonic antigen (CEA) family: Structures, suggested functions and expression in normal and malignant tissues. Semin. Cancer Biol. 9, 67–81.PubMedCrossRefGoogle Scholar
  58. 58.
    Marshall, J. L., Hoyer, R. J., Toomey, M. A., et al. (2000) Phase I study in advanced cancer patients of a diversified prime and boost vaccination protocol using recombinant vaccinia virus and recombinant nonreplicating Avipox virus to elicit anti-carcinoembryonic antigen immune responses. J. Clin. Oncol. 18, 3964–3973.PubMedGoogle Scholar
  59. 59.
    Restifo, N. P. (2000) Cancer vaccines: Basic principles, in The Principles and Practice of the Biologic Therapy of Cancer, 3rd ed. (Rosenberg, S. A., ed.), Philadelphia: Lippincott Williams & Wilkins, pp. 571–584.Google Scholar
  60. 60.
    Pardoll, D. M. and Jaffee, E. M. (2000) Cancer vaccines: Clinical applications, in The Principles and Practice of the Biologic Therapy of Cancer, 3rd ed. (Rosenberg, S. A., ed.), Philadelphia: Lippincott Williams & Wilkins, pp. 647–662.Google Scholar
  61. 61.
    Greten, T. F. and Jaffee, E. M. (1999) Cancer vaccines. J. Clin. Oncol. 17, 1047–1060.PubMedGoogle Scholar
  62. 62.
    Fearon, E. R., Itaya, T., Hunt, B., Vogelstein, B., and Frost, P. (1988) Induction in a murine tumor of immunogenic tumor variants by transfection with a foreign gene. Cancer Res. 48, 2975–2980.PubMedGoogle Scholar
  63. 63.
    Golumbek, P., Lazenby, A., Levitsky, H. I., et al. (1991) Treatment of established renal cancer by tumor cells engineered to secrete interleukin-4. Science 254, 713–716.PubMedCrossRefGoogle Scholar
  64. 64.
    Dranoff, G., Jaffee, E. M., Golumbek, P., et al. (1993) Vaccination with irradiated tumor cells engineered to secrete murine GM-CSF stimulates potent, specific and long lasting anti-tumor immunity. Proc. Natl. Acad. Sci. USA 90, 3539–3543.PubMedCrossRefGoogle Scholar
  65. 65.
    Inaba, K., Steinman, R., Pack, M., et al. (1992) Identification of proliferating dendritic cell precursors in mouse blood. J. Exp. Med. 175, 1157–1167.PubMedCrossRefGoogle Scholar
  66. 66.
    Huang, A. Y., Golumbek, P. T., Ahmadzadeh, M., et al. (1994) Role of bone marrow derived cells in presenting MHC class I restricted tumor antigens. Science 264, 961–965.PubMedCrossRefGoogle Scholar
  67. 67.
    Nakazaki, Y., Tani, K., Lin, Z. T., et al. (1998) Vaccine effect of granulocyte-macrophage colony stimulating factor or CD80 gene transduced murine hematopoietic tumor cells and their cooperative enhancement of anti-tumor immunity. Gene Ther. 5, 1355–1362.PubMedCrossRefGoogle Scholar
  68. 68.
    Golumbek, P. T., Azhari, R., Jaffee, E. M., et al. (1993) Controlled release biodegradable cytokine depots: A new approach to cancer vaccine design. Cancer Res. 53, 1–4.Google Scholar
  69. 69.
    Jaffee, E. M., Abrams, R. A., Cameron, J. L., et al. (1998) A phase I trial of lethally irradiated allogeneic pancreatic tumor cells transfected with the GM-CSF gene for the treatment of pancreatic adenocarcinoma. Hum. Gene Ther. 9, 1951–1971.PubMedCrossRefGoogle Scholar
  70. 70.
    Simons, J. W., Jaffee, E. M., Weber, C, et al. (1997) Bioactivity of human GM-CSF gene transduced autologous renal vaccines. Cancer Res. 57, 1537–1546.PubMedGoogle Scholar
  71. 71.
    Simons, J. W., Mikhak, B., Chang, J. F., et al. (1999) Induction of immunity to prostate cancer antigens: Results of a clinical trial of vaccination with irradiated autologous prostate tumor cells engineered to secrete granulocyte-macrophage colony stimulating factor using ex vivo gene transfer. Cancer Res. 59, 5160–5168.PubMedGoogle Scholar
  72. 72.
    Soiffer, R., Lynch, T., Mihm, M., et al. (1998) Vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte-macrophage colony-stimulating factor generates potent antitumor immunity in patients with metastatic melanoma. Proc. Natl. Acad. Sci. USA 95, 13141–13146.PubMedCrossRefGoogle Scholar
  73. 73.
    Cox, A. L., Skipper, J., Chen, Y., et al. (1994) Identification of a peptide recognized by five melanoma specific human cytotoxic T cell lines. Science 264, 716–719.PubMedCrossRefGoogle Scholar
  74. 74.
    Kawakami, Y., Eliyahu, S., Delgado, C. H., et al. (1994) Cloning of the gene coding for a shared human melanoma antigen recognized by autologous T cells infiltrating into tumor. Proc. Natl. Acad. Sci. USA 91, 3515–3519.PubMedCrossRefGoogle Scholar
  75. 75.
    Jaffee, E. M., Schutte, M., Gossett, J., et al. (1998) Development and characterization of a cytokine-secreting pancreatic adenocarcinoma vaccine from primary tumors for use in clinical trials. Can. J. Sci. Am. 4, 194–203.Google Scholar
  76. 76.
    Jaffee, E. M., Hruban, R., Biedzycki, B., et al. (2001) A novel allogeneic GM-CSF secreting tumor vaccine for pancreatic cancer: A phase I trial of safety and immune activation. J. Clin. Oncol. 19, 145–156.PubMedGoogle Scholar
  77. 77.
    Davis, M. P., Dinneen, A. B., Landa, N, et al. (1999) Grover’s disease: Clinico-pathologic review of 72 cases. Mayo Clin. Proc. 74, 229–234.PubMedCrossRefGoogle Scholar
  78. 78.
    Boon, T. and Van Den Eynde, B. J. (2000) Cancer vaccines; cancer antigens, in The Principles and Practice of the Biologic Therapy of Cancer, 3rd ed. (Rosenberg, S. A., ed.), Philadelphia: Lippincott Williams & Wilkins. pp. 493–504.Google Scholar
  79. 79.
    Graham, F. L. and Van Der Eb, A. J. (1973) A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52, 456–467.PubMedCrossRefGoogle Scholar
  80. 80.
    Potter, H., Weir, L., and Leder, P. (1984) Enhancer-dependent expression of human kappa immunoglobulin genes introduced into mouse pre-B lymphocytes by electroporation. Proc. Natl. Acad. Sci. USA 81, 7161–7165.PubMedCrossRefGoogle Scholar
  81. 81.
    Capecchi, M. R. (1980) High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell 22, 479–488.PubMedCrossRefGoogle Scholar
  82. 82.
    Felgner, P. L., Gadek, T. R., Holm, M., et al. (1987) Lipofection: A highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. USA 84, 7413–7417.PubMedCrossRefGoogle Scholar
  83. 83.
    Banerji, J., Rusconi, S., and Schaffner, W. (1981) Expression of a beta-globin gene is enhanced by remote SV40 DNA sequences. Cell 27, 299–308.PubMedCrossRefGoogle Scholar
  84. 84.
    Kingston, R. E. (1993) Introduction of DNA into mammalian cells, in Current Protocols in Molecular Biology, vol. 1 (Ausubel, F. M., Brent, R., Kingston, R. E., et al., eds.). Hoboken, NJ: John Wiley and Sons.Google Scholar
  85. 85.
    Mulligan, R. C. (1991) Gene transfer and gene therapy. principles, prospects, and perspective, in Etiology of Human Diseases at the DNA Level (Lindsten, J. and Pettersson, U., eds.), New York: Raven Press.Google Scholar
  86. 86.
    Danos, O. and Mulligan, R. C. (1988) Safe and efficient generation of recombinant retroviruses with amphotropic and ecotropic host ranges. Proc. Natl. Acad. Sci. USA 85, 6460–6464.PubMedCrossRefGoogle Scholar
  87. 87.
    Mann, R., Mulligan, R. C, and Baltimore, D. (1983) Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus. Cell 33, 153–159.PubMedCrossRefGoogle Scholar
  88. 88.
    Miller, D. A. and Buttimore, C. (1986) Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol. Cell. Biol. 6, 2895–2902.PubMedGoogle Scholar
  89. 89.
    Armentano, D., Sheau-Fung, Y., Kantoff, P., von Ruden, T., Anderson, W. F., and Gilboa, E. (1987) Effect of internal viral sequences on the utility of retroviral vectors. J. Virol. 61, 1647–1650.PubMedGoogle Scholar
  90. 90.
    Lindemann, D., Patriquin, E., Feng, S., and Mulligan, R. C. (1997) Versatile retroviral vector systems for regulating gene expression in vitro and in vivo. Mol. Med. 3, 466–476.PubMedCrossRefGoogle Scholar
  91. 91.
    Uberla, K. (2002) Lentivirus vector based on simian immunodeficiency virus. Development and use. Methods Mol. Med. 69, 351–360.PubMedGoogle Scholar
  92. 92.
    Srinivasakumar, N. (2002) Packaging cell system for lentivirus vectors. Preparation and use. Methods Mol. Med. 69, 275–302.PubMedGoogle Scholar
  93. 93.
    Miller, D. A., Miller, D. G., Garcia, V. J., and Lynch, C. M. (1993) Use of retroviral vectors for gene transfer and expression. Methods Enzymol. 217, 581–599.PubMedCrossRefGoogle Scholar
  94. 94.
    Mann, R., Mulligan, R. C, and Baltimore, D. (1983) Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus. Cell 33, 153–159.PubMedCrossRefGoogle Scholar
  95. 95.
    Miller, A. D., Law, M. F., and Verma, I. M. (1985) Generation of helper-free amphotropic retroviruses that transduce a dominant acting, methotrexate-resistant dihydrofolate reductase gene. Mol. Cell Biol. 5, 431–437.PubMedGoogle Scholar
  96. 96.
    Mann, R. and Baltimore, D. (1985) Varying the position of a retrovirus packaging sequence results in the encapsidation of both unspliced and spliced RNAs. J. Virol. 54, 401–407.PubMedGoogle Scholar
  97. 97.
    Danos, O. and Mulligan, R. C. (1988) Safe and efficient generation of recombinant retroviruses with amphotropic and ecotropic host ranges. Proc. Natl. Acad. Sci. USA 85, 6460–6464.PubMedCrossRefGoogle Scholar
  98. 98.
    Miller, D. A. and Buttimore, C. (1986) Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol. Cell. Biol. 6, 2895–2902.PubMedGoogle Scholar
  99. 99.
    Bosselman, R. A., Hsu, R. Y., Bruszewski, J., Hu, F., Martin, F., and Nicholson, M. (1987) Replication-defective chimeric helper proviruses and factors affecting generation of competent virus: Expression of Muloney murine leukemia virus structural genes viathe metallothionein promoter. Mol. Cell Biol. 7, 1797–1806.PubMedGoogle Scholar
  100. 100.
    Jaffee, E. M., Schutte, M., Gossett, J., et al. (1998) Development and characterization of a cytokine secreting pancreatic adenocarcinoma vaccine from primary tumors for use in clinical trials. Cancer J. Sci. Am. 4, 194–203.PubMedGoogle Scholar
  101. 101.
    Small, J. and Scangos, G (1983) Recombination during gene transfer into mouse cells can restore the function of deleted genes. Science 219, 174–176.PubMedCrossRefGoogle Scholar
  102. 102.
    Kotani, H., Newton, P. B., Zhang, S., et al. (1994) Improved methods of retroviral vector transduction and production for gene therapy. Hum. Gene Ther. 5, 19–28.PubMedCrossRefGoogle Scholar
  103. 103.
    Cornetta, K. and Anderson, F. (1989) Protamine sulfate as an effective alternative to polybrene in retroviral-mediated gene transfer: Implications for human gene therapy. J. Virol. Methods 23, 187–194.PubMedCrossRefGoogle Scholar
  104. 104.
    Wilson, J. M., Jefferson, D. M., Chowdhury, J. R., Novikoff, P. M., Johnston, D. E., and Mulligan, R. C. (1988) Retrovirus-mediated transduction of adult hepatocytes. Proc. Natl. Acad. Sci. USA 85, 3014–3018.PubMedCrossRefGoogle Scholar
  105. 105.
    Leventis, R. and Silvius, J. R. (1990) Interactions of mammalian cells with lipid dispersions containing novel metabolizable cationic amphiphiles. Biochem. Biophys. Acta 1023, 124–132.PubMedCrossRefGoogle Scholar
  106. 106.
    Gearing, A. J. H. and Bird, C. B. (1987) Production and assay of interleukin 2, in Lymphokines and Interferons, A Practical Approach (Clemens, M. J., Morris, A. G., and Gearing, A. J. H., eds.), Oxford: IRL Press, p. 291.Google Scholar
  107. 107.
    Coligan, J. E., Kruisbeck, A. M., Margulies, D. H., Shevach, E. M., and Strober, W. (1991) Current Protocols in Immunology New York: Greene Wiley-Interscience.Google Scholar
  108. 108.
    Kitamura, T., Tojo, A., Kuwaki, T., et al. (1989) Identification and analysis of human erythropoietin receptors on a factor-dependent cell line, TF-1. Blood 73, 375–380.PubMedGoogle Scholar
  109. 109.
    Holmes, K. L., Palaszynski, E., and Fredrikson, T. N. (1985) Correlation of cell-surface phenotype with the establishment of interleukin3-dependent cell lines from wild-mouse murine leukemia virus-induced neoplasms. Proc. Natl. Acad. Sci. USA 82, 6687–6691.PubMedCrossRefGoogle Scholar
  110. 110.
    Yokota, T., Otsuka, T., Mosmann, T., et al. (1986) Isolation and characterization of a human interleukin cDNA clone, homologous to mouse B-cell stimulatory factor 1, that expresses B-cell stimulatory factor 1, that expresses B-cell-and T-cell-stimulating activities. Proc. Natl. Acad. Sci. USA 83, 5894–5898.PubMedCrossRefGoogle Scholar
  111. 111.
    Fernandez-Botran, R., Krammer, P. H., Diamanttein, T., Uhr, W., and Vitetta, E. S. (1986) B cell-stimulatory factor 1 (BSF-1) promotes growth of helper T cell lines. J. Exp. Med. 164, 580–593.PubMedCrossRefGoogle Scholar
  112. 112.
    Nordan, R. P., Pumphrey, J. G, and Rudikoff, S. (1987) Purification and NH2-terminal sequence of a plasmacytoma growth factor derived from the murine macrophage cell line P388D1. J. Immunol. 139, 813–817.PubMedGoogle Scholar
  113. 113.
    Meager, A. (1987) Quantification of interferons by anti-viral assays and their standardization, in Lymphokines and Interferons, A Practical Approach (Clemens, M. J., Morris, A. G, and Gearing, A. J. H., eds.), Oxford: IRL Press, p. 129.Google Scholar
  114. 114.
    Mathews, N. and Neale, M. L. (1987) Cytotoxicity assays for tumor necrosis factor and lymphotoxin, in Lymphokines and Interferons, A Practical Approach (Clemens, M. J., Morris, A. G, and Gearing, A. J. H., eds.), Oxford: IRL Press, p. 221.Google Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Dan Laheru
    • 1
  • Barbara Biedrzycki
    • 1
  • Amy M. Thomas
    • 1
  • Elizabeth M. Jaffee
    • 1
  1. 1.The Sidney Kimmel Cancer CenterThe Johns Hopkins University School of MedicineBaltimore

Personalised recommendations