Skip to main content

Zebrafish as a Model for Pancreatic Cancer Research

  • Protocol
  • 980 Accesses

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 103))

Abstract

Elucidation of basic mechanisms that regulate pancreatic organogenesis may help define molecular pathways involved in the development of exocrine pancreas cancer. The zebrafish has emerged as a powerful model for genetic dissection of the mechanisms underlying vertebrate organogenesis including formation of the pancreas. Unique properties of zebrafish enable genetic and embryological analyses not feasible using other vertebrate model organisms. The optical clarity of the zebrafish embryos allows visual detection of markers for pancreatic morphogenesis and cytodifferentiation by whole mount immunohistochemistry and RNA in situ hybridization. This feature, coupled with the accessibility of the externally fertilized zebrafish embryo and the small size and fecundity of adult zebrafish, facilitates large-scale forward genetic screens using chemical or insertional mutagenesis techniques. Furthermore, these properties allow high throughput studies that target functions of known genes via antisense or enforced expression studies. Together, such studies are predicted to identify novel genes, or known genes essential for pancreas development. Work in zebrafish is predicted to complement research performed using other vertebrate model organisms, and may help identify markers that define early stages of pancreatic tumorigenesis as well as potential targets for therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kern, S., Hruban, R., Hollingsworth, M. A., et al. (2001) A white paper: The product of a pancreas cancer think tank. Cancer Res. 61, 4923–4932.

    PubMed  CAS  Google Scholar 

  2. Bardeesy, N., Sharpless, N. E., DePinho, R. A., and Merlino, G. (2001) The genetics of pancreatic adenocarcinoma: A roadmap for a mouse model. Semin. Cancer Biol. 11, 201–218.

    Article  PubMed  CAS  Google Scholar 

  3. Zhou, W., Sokoll, L. J., Bruzek, D. J., et al. (1998) Identifying markers for pancreatic cancer by gene expression analysis. Cancer Epidemiol. Biomark. Prev. 7, 109–112.

    CAS  Google Scholar 

  4. Argani, P., Rosty, C., Reiter, R. E., et al. (2001) Discovery of new markers of cancer through serial analysis of gene expression: Prostate stem cell antigen is over-expressed in pancreatic adenocarcinoma. Cancer Res. 61, 4320–4324.

    PubMed  CAS  Google Scholar 

  5. Ryu, B., Jones, J., Blades, N. J., et al. (2002) Relationships and differentially expressed genes among pancreatic cancers examined by large-scale serial analysis of gene expression. Cancer Res. 62, 819–826.

    PubMed  CAS  Google Scholar 

  6. Iacobuzio-Donahue, C. A., Maitra, A., Shen-Ong, G. L., et al. (2002) Discovery of novel tumor markers of pancreatic cancer using global gene expression technology. Am. J. Pathol. 160, 1239–1249.

    Article  PubMed  CAS  Google Scholar 

  7. Sakorafas, G. H., Tsiotou, A. G., and Tsiotos, G. G. (2000) Molecular biology of pancreatic cancer; oncogenes, tumor suppressor genes, growth factors, and their receptors from a clinical perspective. Cancer Treat. Rev. 26, 29–52.

    Article  PubMed  CAS  Google Scholar 

  8. Reddy, J. K. and Rao, M. S. (1995) Progress in pancreatic cancer: Implications of phenotypic and molecular plasticity. Lab. Invest. 72, 383–385.

    PubMed  CAS  Google Scholar 

  9. Edlund, H. (2001) Developmental biology of the pancreas. Diabetes 50, S5–S9.

    Article  PubMed  CAS  Google Scholar 

  10. Kim, S. K. and Hebrok, M. (2001) Intercellular signals regulating pancreas development and function. Genes Dev. 15, 111–127.

    Article  PubMed  CAS  Google Scholar 

  11. Slack, J. M. W. (1995) Developmental biology of the pancreas. Development 121, 1569–1580.

    PubMed  CAS  Google Scholar 

  12. Deutsch, G,, Jung, J., Zheng, M., Lora, J., and Zaret, K. S. (2001) A bipotential precursor population for pancreas and liver within the embryonic endoderm. Development 128, 871–881.

    PubMed  CAS  Google Scholar 

  13. Hebrok, M., Kim, S. K, and Melton, D. A. (1998) Notochord repression of endodermal Sonic hedgehog permits pancreas development. Genes Dev. 12, 1705–1713.

    Article  PubMed  CAS  Google Scholar 

  14. Kim, S. K. and Melton, D. A. (1998) Pancreas development is promoted by cyclopamine, a Hedgehog signaling inhibitor. Proc. Natl. Acad. Sci. USA 95, 13036–13041.

    Article  PubMed  CAS  Google Scholar 

  15. Li, H., Arber, S., Jessell, T. M., and Edlund, H. (1999) Selective agenesis of the dorsal pancreas in mice lacking homeobox gene Hlxb9. Nat. Genet. 23, 67–70.

    PubMed  CAS  Google Scholar 

  16. Harrison, K. A., Thaler, J., Pfaff, S. L., Gu, H., and Kehrl, J. H. (1999) Pancreas dorsal lobe agenesis and abnormal islets of Langerhans in Hlxb9-deficient mice. Nat. Genet. 23, 71–75.

    PubMed  CAS  Google Scholar 

  17. Esni, F., Johansson, B. R., Radice, G. L., and Semb, H. (2001) Dorsal pancreas agenesis in N-cadherin-deficient mice. Dev. Biol. 238, 202–212.

    Article  PubMed  CAS  Google Scholar 

  18. Jonsson, J., Carlsson, L., Edlund, T., and Edlund, H. (1994) Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 371, 606–609.

    Article  PubMed  CAS  Google Scholar 

  19. Offield, M. F., Jetton, T. L., Labosky, P. A., et al. (1996) PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 122, 983–995.

    PubMed  CAS  Google Scholar 

  20. Stoffers, D. A., Zinkin, N. T., Stanojevic, V., Clarke, W. L., and Habener, J. F. (1997) Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat. Genet. 15, 106–110.

    Article  PubMed  CAS  Google Scholar 

  21. Grapin-Botton, A., Majithia, A. R., and Melton, D. A. (2001) Key events of pancreas formation are triggered in gut endoderm by ectopic expression of pancreatic regulatory genes. Genes Dev. 15, 444–454.

    Article  PubMed  CAS  Google Scholar 

  22. Swift, G. H., Liu, Y., Rose, S. D., et al. (1998) An endocrine-exocrine switch in the activity of the pancreatic homeodomain protein PDX1 through formation of a trimeric complex with PBX1b and MRG1 (MEIS2). Mol. Cell. Biol. 18, 5109–5120.

    PubMed  CAS  Google Scholar 

  23. Dutta, S., Gannon, M., Peers, B., Wright, C., Bonner-Weir, S., and Montminy, M. (2001) PDX:PBX complexes are required for normal proliferation of pancreatic cells during development. Proc. Natl. Acad. Sci. USA 98, 1065–1070.

    Article  PubMed  CAS  Google Scholar 

  24. Kim, S. K., Selleri, L., Lee, J. S., et al. (2002) Pbx1 inactivation disrupts pancreas development and in Ipf1-deficient mice promotes diabetes mellitus. Nat. Genet. 30, 430–435.

    Article  PubMed  CAS  Google Scholar 

  25. Apelqvist, A., Li, H., Sommer, L., et al. (1999) Notch signalling controls pancreatic cell differentiation. Nature 400, 877–881.

    Article  PubMed  CAS  Google Scholar 

  26. Jensen, J., Pedersen, E. E., Galante, P., et al. (2000) Control of endodermal endocrine development by Hes-1. Nat. Genet. 24, 36–44.

    Article  PubMed  CAS  Google Scholar 

  27. Jensen, J., Heller, R. S., Funder-Nielsen, T., et al. (2000) Independent development of pancreatic α-and β-cells from neurogenin3-expressing precursors. Diabetes 49, 163–176.

    Article  PubMed  CAS  Google Scholar 

  28. Gradwohl, G., Dierich, A., LeMeur, M., and Guillemot, F. (2000) Neurogenin3 is requuired for the development of the four endocrine cell lineages of the pancreas. Proc. Natl. Acad. Sci. USA 97, 1607–1611.

    Article  PubMed  CAS  Google Scholar 

  29. Schwitzgebel, V. M., Scheel, D. W., Conners, J. R., et al. (2000) Expression of neurogenin3 reveals an islet cell precursor population in the pancreas. Development 127, 3533–3542.

    PubMed  CAS  Google Scholar 

  30. Gu, G., Dubauskaite, J., and Melton, D. A. (2002) Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 129, 2447–2457.

    PubMed  CAS  Google Scholar 

  31. Ahlgren, U., Pfaff, S. L., Jessell, T. M., Edlund, T., and Edlund, H. (1997) Independent requirement for ISL1 in formation of pancreatic mesenchyme and islet cells. Nature 385, 257–260.

    Article  PubMed  CAS  Google Scholar 

  32. Naya, F. J., Huang H. P., Qiu, Y., et al. (1997) Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/neuroD-deficient mice. Genes Dev. 11, 2323–2334.

    Article  PubMed  CAS  Google Scholar 

  33. Sosa-Pineda, B., Chowdhury, K., Torres, M., Oliver, G., and Gruss, P. (1997) The Pax4 gene is essential for differentiation of insulin-producing beta cells in the mammalian pancreas. Nature 386, 399–402.

    Article  PubMed  CAS  Google Scholar 

  34. St-Onge, L., Sosa-Pineda, B., Chowdhury, K., Mansouri, A., and Gruss, P. (1997) Pax6 is required for differentiation of glucagons-producing alpha-cells in mouse pancreas. Nature 387, 406–409.

    Article  PubMed  CAS  Google Scholar 

  35. Sussel, L., Kalamaras, J., Hartigan-O’Connor, D. J., et al. (1998) Mice lacking the homeodomain transcription factor Nkx2.2 have diabetes due to arrested differentiation of pancreatic beta cells. Development 125, 2213–2221.

    PubMed  CAS  Google Scholar 

  36. Sander, M., Sussel, L., Conners, J., et al. (2000) Homeobox gene Nkx6.1 lies down-stream of Nkx2.2 in the major pathway of β-cell formation in the pancreas. Development 127, 5533–5540.

    PubMed  CAS  Google Scholar 

  37. Boj, S. F., Parrizas, M., Maestro, M. A., and Ferrer, J. (2001) A transcription factor circuit in differentiated pancreatic cells. Proc. Natl. Acad. Sci. USA 98, 14481–14486.

    Article  PubMed  CAS  Google Scholar 

  38. Sanvito, F., Herrera, P.-L., Huarte, J., et al. (1994) TGF-β1 influences the relative development of the exocrine and endocrine pancreas in vitro. Development 120, 3451–3462.

    PubMed  CAS  Google Scholar 

  39. Kim, S. K., Hebrok, M., Li, E., et al. (2000) Activin receptor patterning of foregut organogenesis. Genes Dev. 14, 1866–1871.

    PubMed  CAS  Google Scholar 

  40. Hebrok, M., Kim, S. K, St-Jacques, B., McMahon, A. P., and Melton, D. A. (2000) Regulation of pancreas development by hedgehog signaling. Development 127, 4905–4913.

    PubMed  CAS  Google Scholar 

  41. Krapp, A., Knofler, M., Lederman, B., et al. (1998) The bHLH protein PTF1-p48 is essential for the formation of the exocrine and the correct spatial organization of the endocrine pancreas. Genes Dev. 12, 3752–3763.

    Article  PubMed  CAS  Google Scholar 

  42. Ritvos, O., Tuuri, T., Eramaa, M., et al. (1995) Activin disrupts epithelial branching morphogenesis in developing glandular organs of the mouse. Mech. Dev. 50, 229–245.

    Article  PubMed  CAS  Google Scholar 

  43. Miralles, F., Czernichow, P., and Scharfman, R. (1998) Follistatin regulates the relative proportions of endocrine versus exocrine tissue during pancreatic development. Development 125, 1017–1024.

    PubMed  CAS  Google Scholar 

  44. Miralles, F., Czernichow, P., Ozaki, K., Itoh, N., and Scharfmann, R. (1999) Signaling through fibroblast growth factor receptor 2b plays a key role in the development of the exocrine pancreas. Proc. Natl. Acad. Sci. USA 96, 6267–6272.

    Article  PubMed  CAS  Google Scholar 

  45. Bhushan, A., Itoh, N., Kato, S., Thiery, J. P., Bellusci, S., and Scharfmann, R. (2001) Fgf10 is essential for maintaining the proliferative capacity of epithelial progenitor cells during early pancreatic organogenesis. Development 128, 5109–5117.

    PubMed  CAS  Google Scholar 

  46. Crisera, C. A., Kadison, A. S., Breslow, G. D., Maldonado, T. S., Longaker, M. T., and Gittes, G. K. (2000) Expression and role of laminin-1 in mouse pancreatic organogenesis. Diabetes 49, 936–944.

    Article  PubMed  CAS  Google Scholar 

  47. Miettinen, P. J., Huotari, M. A., Koivisto, T., et al. (2000) Impaired migration and delayed differentiation of pancreatic islet cells in mice lacking EGF-receptors. Development 127, 2617–2627.

    PubMed  CAS  Google Scholar 

  48. Lewis, J. (1996) Neurogenic genes and vertebrate neurogenesis. Curr. Opin. Neurobiol. 6, 3–10.

    Article  PubMed  CAS  Google Scholar 

  49. Streisinger, G., Walker, C., Dower, N., Knauber, D., and Singer, F. (1981) Production of clones of homozygous diploid zebrafish (Brachydanio rerio). Nature 291, 293–296.

    Article  PubMed  CAS  Google Scholar 

  50. Kimmel, C. B. (1989) Genetics and early development of zebrafish. Trends Genet. 5, 283–288.

    Article  PubMed  CAS  Google Scholar 

  51. Haffter, P., Granato, M., Brand, M., et al. (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123, 1–36.

    PubMed  CAS  Google Scholar 

  52. Driever, W., Solnica-Krezel, L., Schier, A. F., et al. (1996) A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123, 37–46.

    PubMed  CAS  Google Scholar 

  53. Donovan, A., Brownlie, A., Zhou, Y., et al. (2000) Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403, 776–781.

    Article  PubMed  CAS  Google Scholar 

  54. Zhong, T. P., Rosenberg, M., Mohideen, M. A. P. K., Weinstein, B., and Fishman, M. C. (2000) Gridlock, an HLH gene required for assembly of the aorta in zebrafish. Science 287, 1820–1824.

    Article  PubMed  CAS  Google Scholar 

  55. Kupperman, E., An, S., Osborne, N., Waldron, S., and Stainier, D. Y. (2000) A sphingosine-1-phosphate receptor regulates cell migration during vertebrate heart development. Nature 406, 192–195.

    Article  PubMed  CAS  Google Scholar 

  56. Pack, M., Solnica-Krezel, L., Malicki, J., et al. (1996) Mutations affecting development of zebrafish digestive organs. Development 123, 321–328.

    PubMed  CAS  Google Scholar 

  57. Biemar, F., Argenton, F., Schmidtke, R., Epperlein, S., Peers, B., and Driever, W. (2001) Pancreas development in zebrafish: Early dispersed appearance of endocrine hormone expressing cells and their convergence to form the definitive islet. Dev. Biol. 230, 189–203.

    Article  PubMed  CAS  Google Scholar 

  58. Argenton, F., Zecchin, E., and Bortolussi, M. (1999) Early appearance of pancreatic hormone-expressing cells in the zebrafish embryo. Mech. Dev. 87, 217–221.

    Article  PubMed  CAS  Google Scholar 

  59. Yee, N. S., Yusuff, S., and Pack, M. (2001) Zebrafish pdxl morphant displays defects in pancreas development and digestive organ chirality, and potentially identifies a multipotent pancreas progenitor cell. Genesis 30, 137–140.

    Article  PubMed  CAS  Google Scholar 

  60. Farber, S. A., Pack, M., Ho, S. Y., et al. (2001) Genetic analysis of digestive physiology using fluorescent phospholipid reporters. Science 292, 1385–1388.

    Article  PubMed  CAS  Google Scholar 

  61. Roy, S., Qiao, T., Wolff, C., and Ingham, P. W. (2001) Hedgehog signaling pathway is essential for pancreas specification in the zebrafish embryo. Curr. Biol. 11, 1358–1363.

    Article  PubMed  CAS  Google Scholar 

  62. diIorio, P. J., Moss, J. B., Sbrogna, J. L., Karlstrom, R. O., and Moss, L. G. (2002) Sonic hedgehog is required early in pancreatic islet development. Dev. Biol. 244, 75–84.

    Article  PubMed  CAS  Google Scholar 

  63. Thomas, M. K., Lee, J. H., Rastalsky, N., and Habener, J. F. (2001) Hedgehog signaling regulation of homeodomain protein Islet Duodenum Homeobox-1 expression in pancreatic β-cells. Endocrinology 142, 1033–1040.

    Article  PubMed  CAS  Google Scholar 

  64. Huang, H., Liu, N., and Lin, S. (2001) Pdx-1 knockdown reduces insulin promoter activity in zebrafish. Genesis 30, 134–136.

    Article  PubMed  CAS  Google Scholar 

  65. Milewski, W. M., Duguay, S. J., Chan, S. J., and Steiner, D. F. (1998) Conservation of PDX-1 structure, function, and expression in zebrafish. Endocrinology 139, 1440–1449.

    Article  PubMed  CAS  Google Scholar 

  66. Inoue, A., Takahashi, M., Hatta, K., Hotta, Y., and Okamoto, H. (1994) Developmental regulation of islet-1 mRNA expression during neuronal differentiation in embryonic zebrafish. Dev. Dynam. 199, 1–11.

    CAS  Google Scholar 

  67. Barth, K. A. and Wilson, S. W. (1995) Expression of zebrafish nk2.2 is influenced by sonic hedgehog/vertebrate hedgehog-1 and demarcates a zone of neuronal differentiation in the embryonic forebrain. Development 121, 1755–1768.

    PubMed  CAS  Google Scholar 

  68. Nornes, S., Clarkson, M., Mikkola, I., et al. (1998) Zebrafish contains two Pax6 genes involved in eye development. Mech. Dev. 77, 185–196.

    Article  PubMed  CAS  Google Scholar 

  69. Glasgow, E. and Tomarev, S. I. (1998) Restricted expression of the homeobox gene prox 1 in developing zebrafish. Mech. Dev. 76, 175–178.

    Article  PubMed  CAS  Google Scholar 

  70. Korzh, V., Sleptsova, I., Liao, J., He, J., and Gong, Z. (1998) Expression of zebrafish bHLH genes ngn1 and nrd defines distinct stages of neural differentiation. Dev. Dynam. 213, 92–104.

    Article  CAS  Google Scholar 

  71. Strahle, U., Blader, P., Henrique, D., and Ingham, P. W. (1993) Axial, a zebrafish gene expressed along the developing body axis, shows altered expression in Cyclops mutant embryos. Genes Dev. 7, 1436–1446.

    Article  PubMed  CAS  Google Scholar 

  72. Odenthal, J. and Nusslein-Volhard, C. (1998) fork head domain genes in zebrafish. Dev. Genes Evol. 208, 245–258.

    Article  PubMed  CAS  Google Scholar 

  73. An, M., Luo, R., and Henion, P. D. (2002) Differentiation and maturation of zebrafish dorsal root and sympathetic ganglion neurons. J. Comp. Neurol. 446, 267–275.

    Article  PubMed  Google Scholar 

  74. Nasevicius, A. and Ekker, S. C. (2000) Effective targeted gene ‘knockdown’ in zebrafish. Nat. Genet. 26, 216–220.

    Article  PubMed  CAS  Google Scholar 

  75. Yee, N. S., Furth, E. E., and Pack, M. (2003) Clinicopathologic and molecular features of pancreatic adenocarcinoma associated with Peutz-Jeghers syndrome. Cancer Biol. Ther. 2, 38–47.

    PubMed  Google Scholar 

  76. Westerfield, M. (2000) The Zebrafish Book. Guide for the Labotratory Use of Zebrafish (Danio rerio). 4th ed. Eugene, OR: University of Oregon Press.

    Google Scholar 

  77. Jowett, T. (1999) aAnalysis of protein and gene expression, in Methods in Cell Biology (Detrich, H. M., Westerfield, M., and Zon, L. I., ed.), San Diego: Academic Press, pp. 63–85.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Yee, N.S., Pack, M. (2005). Zebrafish as a Model for Pancreatic Cancer Research. In: Su, G.H. (eds) Pancreatic Cancer. Methods in Molecular Medicine™, vol 103. Humana Press. https://doi.org/10.1385/1-59259-780-7:273

Download citation

  • DOI: https://doi.org/10.1385/1-59259-780-7:273

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-107-3

  • Online ISBN: 978-1-59259-780-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics