Zebrafish as a Model for Pancreatic Cancer Research

  • Nelson S. Yee
  • Michael Pack
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 103)


Elucidation of basic mechanisms that regulate pancreatic organogenesis may help define molecular pathways involved in the development of exocrine pancreas cancer. The zebrafish has emerged as a powerful model for genetic dissection of the mechanisms underlying vertebrate organogenesis including formation of the pancreas. Unique properties of zebrafish enable genetic and embryological analyses not feasible using other vertebrate model organisms. The optical clarity of the zebrafish embryos allows visual detection of markers for pancreatic morphogenesis and cytodifferentiation by whole mount immunohistochemistry and RNA in situ hybridization. This feature, coupled with the accessibility of the externally fertilized zebrafish embryo and the small size and fecundity of adult zebrafish, facilitates large-scale forward genetic screens using chemical or insertional mutagenesis techniques. Furthermore, these properties allow high throughput studies that target functions of known genes via antisense or enforced expression studies. Together, such studies are predicted to identify novel genes, or known genes essential for pancreas development. Work in zebrafish is predicted to complement research performed using other vertebrate model organisms, and may help identify markers that define early stages of pancreatic tumorigenesis as well as potential targets for therapy.

Key Words

Zebrafish immunohistochemistry in situ hybridization neoplasms pancreas development pancreatic cancer 


  1. 1.
    Kern, S., Hruban, R., Hollingsworth, M. A., et al. (2001) A white paper: The product of a pancreas cancer think tank. Cancer Res. 61, 4923–4932.PubMedGoogle Scholar
  2. 2.
    Bardeesy, N., Sharpless, N. E., DePinho, R. A., and Merlino, G. (2001) The genetics of pancreatic adenocarcinoma: A roadmap for a mouse model. Semin. Cancer Biol. 11, 201–218.PubMedCrossRefGoogle Scholar
  3. 3.
    Zhou, W., Sokoll, L. J., Bruzek, D. J., et al. (1998) Identifying markers for pancreatic cancer by gene expression analysis. Cancer Epidemiol. Biomark. Prev. 7, 109–112.Google Scholar
  4. 4.
    Argani, P., Rosty, C., Reiter, R. E., et al. (2001) Discovery of new markers of cancer through serial analysis of gene expression: Prostate stem cell antigen is over-expressed in pancreatic adenocarcinoma. Cancer Res. 61, 4320–4324.PubMedGoogle Scholar
  5. 5.
    Ryu, B., Jones, J., Blades, N. J., et al. (2002) Relationships and differentially expressed genes among pancreatic cancers examined by large-scale serial analysis of gene expression. Cancer Res. 62, 819–826.PubMedGoogle Scholar
  6. 6.
    Iacobuzio-Donahue, C. A., Maitra, A., Shen-Ong, G. L., et al. (2002) Discovery of novel tumor markers of pancreatic cancer using global gene expression technology. Am. J. Pathol. 160, 1239–1249.PubMedCrossRefGoogle Scholar
  7. 7.
    Sakorafas, G. H., Tsiotou, A. G., and Tsiotos, G. G. (2000) Molecular biology of pancreatic cancer; oncogenes, tumor suppressor genes, growth factors, and their receptors from a clinical perspective. Cancer Treat. Rev. 26, 29–52.PubMedCrossRefGoogle Scholar
  8. 8.
    Reddy, J. K. and Rao, M. S. (1995) Progress in pancreatic cancer: Implications of phenotypic and molecular plasticity. Lab. Invest. 72, 383–385.PubMedGoogle Scholar
  9. 9.
    Edlund, H. (2001) Developmental biology of the pancreas. Diabetes 50, S5–S9.PubMedCrossRefGoogle Scholar
  10. 10.
    Kim, S. K. and Hebrok, M. (2001) Intercellular signals regulating pancreas development and function. Genes Dev. 15, 111–127.PubMedCrossRefGoogle Scholar
  11. 11.
    Slack, J. M. W. (1995) Developmental biology of the pancreas. Development 121, 1569–1580.PubMedGoogle Scholar
  12. 12.
    Deutsch, G,, Jung, J., Zheng, M., Lora, J., and Zaret, K. S. (2001) A bipotential precursor population for pancreas and liver within the embryonic endoderm. Development 128, 871–881.PubMedGoogle Scholar
  13. 13.
    Hebrok, M., Kim, S. K, and Melton, D. A. (1998) Notochord repression of endodermal Sonic hedgehog permits pancreas development. Genes Dev. 12, 1705–1713.PubMedCrossRefGoogle Scholar
  14. 14.
    Kim, S. K. and Melton, D. A. (1998) Pancreas development is promoted by cyclopamine, a Hedgehog signaling inhibitor. Proc. Natl. Acad. Sci. USA 95, 13036–13041.PubMedCrossRefGoogle Scholar
  15. 15.
    Li, H., Arber, S., Jessell, T. M., and Edlund, H. (1999) Selective agenesis of the dorsal pancreas in mice lacking homeobox gene Hlxb9. Nat. Genet. 23, 67–70.PubMedGoogle Scholar
  16. 16.
    Harrison, K. A., Thaler, J., Pfaff, S. L., Gu, H., and Kehrl, J. H. (1999) Pancreas dorsal lobe agenesis and abnormal islets of Langerhans in Hlxb9-deficient mice. Nat. Genet. 23, 71–75.PubMedGoogle Scholar
  17. 17.
    Esni, F., Johansson, B. R., Radice, G. L., and Semb, H. (2001) Dorsal pancreas agenesis in N-cadherin-deficient mice. Dev. Biol. 238, 202–212.PubMedCrossRefGoogle Scholar
  18. 18.
    Jonsson, J., Carlsson, L., Edlund, T., and Edlund, H. (1994) Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 371, 606–609.PubMedCrossRefGoogle Scholar
  19. 19.
    Offield, M. F., Jetton, T. L., Labosky, P. A., et al. (1996) PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 122, 983–995.PubMedGoogle Scholar
  20. 20.
    Stoffers, D. A., Zinkin, N. T., Stanojevic, V., Clarke, W. L., and Habener, J. F. (1997) Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat. Genet. 15, 106–110.PubMedCrossRefGoogle Scholar
  21. 21.
    Grapin-Botton, A., Majithia, A. R., and Melton, D. A. (2001) Key events of pancreas formation are triggered in gut endoderm by ectopic expression of pancreatic regulatory genes. Genes Dev. 15, 444–454.PubMedCrossRefGoogle Scholar
  22. 22.
    Swift, G. H., Liu, Y., Rose, S. D., et al. (1998) An endocrine-exocrine switch in the activity of the pancreatic homeodomain protein PDX1 through formation of a trimeric complex with PBX1b and MRG1 (MEIS2). Mol. Cell. Biol. 18, 5109–5120.PubMedGoogle Scholar
  23. 23.
    Dutta, S., Gannon, M., Peers, B., Wright, C., Bonner-Weir, S., and Montminy, M. (2001) PDX:PBX complexes are required for normal proliferation of pancreatic cells during development. Proc. Natl. Acad. Sci. USA 98, 1065–1070.PubMedCrossRefGoogle Scholar
  24. 24.
    Kim, S. K., Selleri, L., Lee, J. S., et al. (2002) Pbx1 inactivation disrupts pancreas development and in Ipf1-deficient mice promotes diabetes mellitus. Nat. Genet. 30, 430–435.PubMedCrossRefGoogle Scholar
  25. 25.
    Apelqvist, A., Li, H., Sommer, L., et al. (1999) Notch signalling controls pancreatic cell differentiation. Nature 400, 877–881.PubMedCrossRefGoogle Scholar
  26. 26.
    Jensen, J., Pedersen, E. E., Galante, P., et al. (2000) Control of endodermal endocrine development by Hes-1. Nat. Genet. 24, 36–44.PubMedCrossRefGoogle Scholar
  27. 27.
    Jensen, J., Heller, R. S., Funder-Nielsen, T., et al. (2000) Independent development of pancreatic α-and β-cells from neurogenin3-expressing precursors. Diabetes 49, 163–176.PubMedCrossRefGoogle Scholar
  28. 28.
    Gradwohl, G., Dierich, A., LeMeur, M., and Guillemot, F. (2000) Neurogenin3 is requuired for the development of the four endocrine cell lineages of the pancreas. Proc. Natl. Acad. Sci. USA 97, 1607–1611.PubMedCrossRefGoogle Scholar
  29. 29.
    Schwitzgebel, V. M., Scheel, D. W., Conners, J. R., et al. (2000) Expression of neurogenin3 reveals an islet cell precursor population in the pancreas. Development 127, 3533–3542.PubMedGoogle Scholar
  30. 30.
    Gu, G., Dubauskaite, J., and Melton, D. A. (2002) Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 129, 2447–2457.PubMedGoogle Scholar
  31. 31.
    Ahlgren, U., Pfaff, S. L., Jessell, T. M., Edlund, T., and Edlund, H. (1997) Independent requirement for ISL1 in formation of pancreatic mesenchyme and islet cells. Nature 385, 257–260.PubMedCrossRefGoogle Scholar
  32. 32.
    Naya, F. J., Huang H. P., Qiu, Y., et al. (1997) Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/neuroD-deficient mice. Genes Dev. 11, 2323–2334.PubMedCrossRefGoogle Scholar
  33. 33.
    Sosa-Pineda, B., Chowdhury, K., Torres, M., Oliver, G., and Gruss, P. (1997) The Pax4 gene is essential for differentiation of insulin-producing beta cells in the mammalian pancreas. Nature 386, 399–402.PubMedCrossRefGoogle Scholar
  34. 34.
    St-Onge, L., Sosa-Pineda, B., Chowdhury, K., Mansouri, A., and Gruss, P. (1997) Pax6 is required for differentiation of glucagons-producing alpha-cells in mouse pancreas. Nature 387, 406–409.PubMedCrossRefGoogle Scholar
  35. 35.
    Sussel, L., Kalamaras, J., Hartigan-O’Connor, D. J., et al. (1998) Mice lacking the homeodomain transcription factor Nkx2.2 have diabetes due to arrested differentiation of pancreatic beta cells. Development 125, 2213–2221.PubMedGoogle Scholar
  36. 36.
    Sander, M., Sussel, L., Conners, J., et al. (2000) Homeobox gene Nkx6.1 lies down-stream of Nkx2.2 in the major pathway of β-cell formation in the pancreas. Development 127, 5533–5540.PubMedGoogle Scholar
  37. 37.
    Boj, S. F., Parrizas, M., Maestro, M. A., and Ferrer, J. (2001) A transcription factor circuit in differentiated pancreatic cells. Proc. Natl. Acad. Sci. USA 98, 14481–14486.PubMedCrossRefGoogle Scholar
  38. 38.
    Sanvito, F., Herrera, P.-L., Huarte, J., et al. (1994) TGF-β1 influences the relative development of the exocrine and endocrine pancreas in vitro. Development 120, 3451–3462.PubMedGoogle Scholar
  39. 39.
    Kim, S. K., Hebrok, M., Li, E., et al. (2000) Activin receptor patterning of foregut organogenesis. Genes Dev. 14, 1866–1871.PubMedGoogle Scholar
  40. 40.
    Hebrok, M., Kim, S. K, St-Jacques, B., McMahon, A. P., and Melton, D. A. (2000) Regulation of pancreas development by hedgehog signaling. Development 127, 4905–4913.PubMedGoogle Scholar
  41. 41.
    Krapp, A., Knofler, M., Lederman, B., et al. (1998) The bHLH protein PTF1-p48 is essential for the formation of the exocrine and the correct spatial organization of the endocrine pancreas. Genes Dev. 12, 3752–3763.PubMedCrossRefGoogle Scholar
  42. 42.
    Ritvos, O., Tuuri, T., Eramaa, M., et al. (1995) Activin disrupts epithelial branching morphogenesis in developing glandular organs of the mouse. Mech. Dev. 50, 229–245.PubMedCrossRefGoogle Scholar
  43. 43.
    Miralles, F., Czernichow, P., and Scharfman, R. (1998) Follistatin regulates the relative proportions of endocrine versus exocrine tissue during pancreatic development. Development 125, 1017–1024.PubMedGoogle Scholar
  44. 44.
    Miralles, F., Czernichow, P., Ozaki, K., Itoh, N., and Scharfmann, R. (1999) Signaling through fibroblast growth factor receptor 2b plays a key role in the development of the exocrine pancreas. Proc. Natl. Acad. Sci. USA 96, 6267–6272.PubMedCrossRefGoogle Scholar
  45. 45.
    Bhushan, A., Itoh, N., Kato, S., Thiery, J. P., Bellusci, S., and Scharfmann, R. (2001) Fgf10 is essential for maintaining the proliferative capacity of epithelial progenitor cells during early pancreatic organogenesis. Development 128, 5109–5117.PubMedGoogle Scholar
  46. 46.
    Crisera, C. A., Kadison, A. S., Breslow, G. D., Maldonado, T. S., Longaker, M. T., and Gittes, G. K. (2000) Expression and role of laminin-1 in mouse pancreatic organogenesis. Diabetes 49, 936–944.PubMedCrossRefGoogle Scholar
  47. 47.
    Miettinen, P. J., Huotari, M. A., Koivisto, T., et al. (2000) Impaired migration and delayed differentiation of pancreatic islet cells in mice lacking EGF-receptors. Development 127, 2617–2627.PubMedGoogle Scholar
  48. 48.
    Lewis, J. (1996) Neurogenic genes and vertebrate neurogenesis. Curr. Opin. Neurobiol. 6, 3–10.PubMedCrossRefGoogle Scholar
  49. 49.
    Streisinger, G., Walker, C., Dower, N., Knauber, D., and Singer, F. (1981) Production of clones of homozygous diploid zebrafish (Brachydanio rerio). Nature 291, 293–296.PubMedCrossRefGoogle Scholar
  50. 50.
    Kimmel, C. B. (1989) Genetics and early development of zebrafish. Trends Genet. 5, 283–288.PubMedCrossRefGoogle Scholar
  51. 51.
    Haffter, P., Granato, M., Brand, M., et al. (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123, 1–36.PubMedGoogle Scholar
  52. 52.
    Driever, W., Solnica-Krezel, L., Schier, A. F., et al. (1996) A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123, 37–46.PubMedGoogle Scholar
  53. 53.
    Donovan, A., Brownlie, A., Zhou, Y., et al. (2000) Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403, 776–781.PubMedCrossRefGoogle Scholar
  54. 54.
    Zhong, T. P., Rosenberg, M., Mohideen, M. A. P. K., Weinstein, B., and Fishman, M. C. (2000) Gridlock, an HLH gene required for assembly of the aorta in zebrafish. Science 287, 1820–1824.PubMedCrossRefGoogle Scholar
  55. 55.
    Kupperman, E., An, S., Osborne, N., Waldron, S., and Stainier, D. Y. (2000) A sphingosine-1-phosphate receptor regulates cell migration during vertebrate heart development. Nature 406, 192–195.PubMedCrossRefGoogle Scholar
  56. 56.
    Pack, M., Solnica-Krezel, L., Malicki, J., et al. (1996) Mutations affecting development of zebrafish digestive organs. Development 123, 321–328.PubMedGoogle Scholar
  57. 57.
    Biemar, F., Argenton, F., Schmidtke, R., Epperlein, S., Peers, B., and Driever, W. (2001) Pancreas development in zebrafish: Early dispersed appearance of endocrine hormone expressing cells and their convergence to form the definitive islet. Dev. Biol. 230, 189–203.PubMedCrossRefGoogle Scholar
  58. 58.
    Argenton, F., Zecchin, E., and Bortolussi, M. (1999) Early appearance of pancreatic hormone-expressing cells in the zebrafish embryo. Mech. Dev. 87, 217–221.PubMedCrossRefGoogle Scholar
  59. 59.
    Yee, N. S., Yusuff, S., and Pack, M. (2001) Zebrafish pdxl morphant displays defects in pancreas development and digestive organ chirality, and potentially identifies a multipotent pancreas progenitor cell. Genesis 30, 137–140.PubMedCrossRefGoogle Scholar
  60. 60.
    Farber, S. A., Pack, M., Ho, S. Y., et al. (2001) Genetic analysis of digestive physiology using fluorescent phospholipid reporters. Science 292, 1385–1388.PubMedCrossRefGoogle Scholar
  61. 61.
    Roy, S., Qiao, T., Wolff, C., and Ingham, P. W. (2001) Hedgehog signaling pathway is essential for pancreas specification in the zebrafish embryo. Curr. Biol. 11, 1358–1363.PubMedCrossRefGoogle Scholar
  62. 62.
    diIorio, P. J., Moss, J. B., Sbrogna, J. L., Karlstrom, R. O., and Moss, L. G. (2002) Sonic hedgehog is required early in pancreatic islet development. Dev. Biol. 244, 75–84.PubMedCrossRefGoogle Scholar
  63. 63.
    Thomas, M. K., Lee, J. H., Rastalsky, N., and Habener, J. F. (2001) Hedgehog signaling regulation of homeodomain protein Islet Duodenum Homeobox-1 expression in pancreatic β-cells. Endocrinology 142, 1033–1040.PubMedCrossRefGoogle Scholar
  64. 64.
    Huang, H., Liu, N., and Lin, S. (2001) Pdx-1 knockdown reduces insulin promoter activity in zebrafish. Genesis 30, 134–136.PubMedCrossRefGoogle Scholar
  65. 65.
    Milewski, W. M., Duguay, S. J., Chan, S. J., and Steiner, D. F. (1998) Conservation of PDX-1 structure, function, and expression in zebrafish. Endocrinology 139, 1440–1449.PubMedCrossRefGoogle Scholar
  66. 66.
    Inoue, A., Takahashi, M., Hatta, K., Hotta, Y., and Okamoto, H. (1994) Developmental regulation of islet-1 mRNA expression during neuronal differentiation in embryonic zebrafish. Dev. Dynam. 199, 1–11.Google Scholar
  67. 67.
    Barth, K. A. and Wilson, S. W. (1995) Expression of zebrafish nk2.2 is influenced by sonic hedgehog/vertebrate hedgehog-1 and demarcates a zone of neuronal differentiation in the embryonic forebrain. Development 121, 1755–1768.PubMedGoogle Scholar
  68. 68.
    Nornes, S., Clarkson, M., Mikkola, I., et al. (1998) Zebrafish contains two Pax6 genes involved in eye development. Mech. Dev. 77, 185–196.PubMedCrossRefGoogle Scholar
  69. 69.
    Glasgow, E. and Tomarev, S. I. (1998) Restricted expression of the homeobox gene prox 1 in developing zebrafish. Mech. Dev. 76, 175–178.PubMedCrossRefGoogle Scholar
  70. 70.
    Korzh, V., Sleptsova, I., Liao, J., He, J., and Gong, Z. (1998) Expression of zebrafish bHLH genes ngn1 and nrd defines distinct stages of neural differentiation. Dev. Dynam. 213, 92–104.CrossRefGoogle Scholar
  71. 71.
    Strahle, U., Blader, P., Henrique, D., and Ingham, P. W. (1993) Axial, a zebrafish gene expressed along the developing body axis, shows altered expression in Cyclops mutant embryos. Genes Dev. 7, 1436–1446.PubMedCrossRefGoogle Scholar
  72. 72.
    Odenthal, J. and Nusslein-Volhard, C. (1998) fork head domain genes in zebrafish. Dev. Genes Evol. 208, 245–258.PubMedCrossRefGoogle Scholar
  73. 73.
    An, M., Luo, R., and Henion, P. D. (2002) Differentiation and maturation of zebrafish dorsal root and sympathetic ganglion neurons. J. Comp. Neurol. 446, 267–275.PubMedCrossRefGoogle Scholar
  74. 74.
    Nasevicius, A. and Ekker, S. C. (2000) Effective targeted gene ‘knockdown’ in zebrafish. Nat. Genet. 26, 216–220.PubMedCrossRefGoogle Scholar
  75. 75.
    Yee, N. S., Furth, E. E., and Pack, M. (2003) Clinicopathologic and molecular features of pancreatic adenocarcinoma associated with Peutz-Jeghers syndrome. Cancer Biol. Ther. 2, 38–47.PubMedGoogle Scholar
  76. 76.
    Westerfield, M. (2000) The Zebrafish Book. Guide for the Labotratory Use of Zebrafish (Danio rerio). 4th ed. Eugene, OR: University of Oregon Press.Google Scholar
  77. 77.
    Jowett, T. (1999) aAnalysis of protein and gene expression, in Methods in Cell Biology (Detrich, H. M., Westerfield, M., and Zon, L. I., ed.), San Diego: Academic Press, pp. 63–85.Google Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Nelson S. Yee
    • 1
  • Michael Pack
    • 1
    • 2
  1. 1.Department of MedicineUniversity of Pennsylvania School of MedicinePhiladelphia
  2. 2.Department of Cell and Developmental BiologyUniversity of Pennsylvania School of MedicinePhiladelphia

Personalised recommendations