Advertisement

Modeling Pancreatic Cancer in Animals to Address Specific Hypotheses

  • Paul J. Grippo
  • Eric P. Sandgren
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 103)

Abstract

Multiple experimental approaches have been employed to study exocrine pancreatic cancer, including the use of animals as surrogates for the human disease. Animals have the advantage that they can be manipulated to address specific hypotheses regarding mechanisms underlying this disease. Implicit in this opportunity is the necessity to match the question being asked with an appropriate animal model. Several approaches to modeling pancreatic cancer have been established that involve animals. First, xenogeneic cell transplantation, generally into immunocompromised rodent subcutis or pancreas, allows examination of (1) the effect of host environment on human or rodent pancreatic cancer cells, (2) whether specific genetic changes in donor cells correlate with certain cancer cell behaviors, and (3) novel approaches to cancer therapy or imaging of tumor growth. Second, carcinogen administration, typically to hamster or rat, allows examination of whether specific genetic, biochemical, cellular, and tissue phenotypic changes, including progression to neoplasia, accompany exposure to a particular chemical. Third, genetically engineered animals, usually transgenic or gene targeted mice, allow examination of (1) whether genetic changes, including oncogene overexpression/mutation or tumor suppressor gene loss, can increase the risk for neoplastic progression, (2) whether specific genetic changes can cooperate during pancreatic carcinogenesis, and (3) how the genetic signature of a neoplasm correlates with particular biological aspects of tumor initiation and progression. Collectively, these experimental approaches permit detailed exploration of pancreatic cancer genetics and biology in the whole animal context, thereby mimicking the environment in which human disease occurs.

Key Words

Animal model chemical carcinogen embryonic stem cells gene targeted mice hamster inducible transgene Kras mouse oncogene pancreatic cancer rat transgenic mice tumor suppressor gene xenogeneic cell transplantation 

References

  1. 1.
    Sohn, T. A. (2002) The molecular genetics of pancreatic ductal carcinoma. Minerva Chir. 57, 561–574.PubMedGoogle Scholar
  2. 2.
    Parker, S., Tong, T., Bolden, S., et. al. (1996) Cancer Statistics. CA J. Clin. 65, 5–27.CrossRefGoogle Scholar
  3. 3.
    Sakorafas, G. H. and Tsiotou, A. G. (1999) Multi-step pancreatic carcinogenesis and its clinical implications. Eur. J. Surg. Oncol. 25, 562–565.PubMedCrossRefGoogle Scholar
  4. 4.
    Hilgers, W. and Kern, S. E. (1999) Molecular genetic basis of pancreatic adenocarcinoma. Genes Chromosom. Cancer 26, 1–12.PubMedCrossRefGoogle Scholar
  5. 5.
    Caldas, C. and Kern, S. E. (1995) K-ras mutation and pancreatic adenocarcinoma. Int. J. Pancreatol. 18, 1–6.PubMedGoogle Scholar
  6. 6.
    Gunji, N., Oda, T., Todoroki, T., et al. (1998) Pancreatic carcinoma: Correlation between E-cadherin and alpha-catenin expression status and liver metastasis. Cancer 82, 1649–1656.PubMedCrossRefGoogle Scholar
  7. 7.
    Visser, C. J., Bruggink, A. H., Korc, M., et al. (1996) Overexpression of transforming growth factor-alpha and epidermal growth factor receptor, but not epidermal growth factor, in exocrine pancreatic tumours in hamsters. Carcinogenesis 17, 779–785.PubMedCrossRefGoogle Scholar
  8. 8.
    Hruban, R. H. W. and Kern, S. E. (2000) Genetic progression in the pancreatic ducts. Am. J. Pathol. 156, 1821–1825.PubMedCrossRefGoogle Scholar
  9. 9.
    Mangray, S. and King, T. C. (1998) Molecular pathobiology of pancreatic adenocarcinoma. Front. Biosci. 3, D1148–1160.PubMedGoogle Scholar
  10. 10.
    Perugini, R. A., McDade, T. P., Vittimberga, F. J. Jr., and Callery, M. P. (1998) The molecular and cellular biology of pancreatic cancer. Crit. Rev. Eukaryot. Gene Express. 8, 377–393.Google Scholar
  11. 11.
    Goggins, M., Kern, S. E., Offerhaus, J. A., and Hruban, R. H. (1999) Progress in cancer genetics: Lessons from pancreatic cancer. Ann. Oncol. 10, 4–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Kumar, V., Bustin, S. A., and McKay, I. A. (1995) Transforming growth factor alpha. Cell Biol. Int. 19, 373–388.PubMedCrossRefGoogle Scholar
  13. 13.
    Sakorafas, G. H., Tsiotou, A. G., and Tsiotos, G. G. (2000) Molecular biology of pancreatic cancer; oncogenes, tumour suppressor genes, growth factors, and their receptors from a clinical perspective. Cancer Treat. Rev. 26, 29–52.PubMedCrossRefGoogle Scholar
  14. 14.
    Moore, P. S., Sipos, B., Orlandini, S., et al. (2001) Genetic profile of 22 pancreatic carcinoma cell lines. Analysis of K-ras, p53, p16 and DPC4/Smad4. Virchows Arch. 439, 798–802.PubMedGoogle Scholar
  15. 15.
    Aoki, K., Yoshida, T., Matsumoto, N., Ide, H., Sugimura, T., and Terada, M. (1997) Suppression of Ki-ras p21 levels leading to growth inhibition of pancreatic cancer cell lines with Ki-ras mutation but not those without Ki-ras mutation. Mol. Carcinog. 20, 251–258.PubMedCrossRefGoogle Scholar
  16. 16.
    Kita, K., Saito, S., Morioka, C. Y., and Watanabe, A. (1999) Growth inhibition of human pancreatic cancer cell lines by anti-sense oligonucleotides specific to mutated K-ras genes. Int. J. Cancer 80, 553–558.PubMedCrossRefGoogle Scholar
  17. 17.
    Hahn, S. A., Seymour, A. B., Hoque, A. T., et al. (1995) Allelotype of pancreatic adenocarcinoma using xenograft enrichment. Cancer Res. 55, 4670–4675.PubMedGoogle Scholar
  18. 18.
    Capella, G., Farre, L., Villanueva, A., et al. (1999) Orthotopic models of human pancreatic cancer. Ann. NY Acad. Sci. 880, 103–109.PubMedCrossRefGoogle Scholar
  19. 19.
    Schwarz, R. E., McCarty, T. M., Peralta, E. A., Diamond, D. J., and Ellenhorn, J. D. (1999) An orthotopic in vivo model of human pancreatic cancer. Surgery 126, 562–567.PubMedCrossRefGoogle Scholar
  20. 20.
    Gingell, R., Wallcave, L., Nagel, D., Kupper, R., and Pour, P. (1976) Metabolism of the pancreatic carcinogens N-nitroso-bis-(2-oxopropyl)amine and N-nitroso-bis (2-hydroxypropyl)amine in the Syrian hamster. J. Natl. Cancer Inst. 57, 1175–1178.PubMedGoogle Scholar
  21. 21.
    Pour, P. and Althoff, J. (1977) The effect of N-nitrosobis(2-oxopropyl)amine after oral administration to hamsters. Cancer Lett. 2, 323–326.PubMedCrossRefGoogle Scholar
  22. 22.
    Konishi, Y., Tsutsumi, M., and Tsujiuchi, T. (1998) Mechanistic analysis of pancreatic ductal carcinogenesis in hamsters. Pancreas 16, 300–306.PubMedCrossRefGoogle Scholar
  23. 23.
    Flaks, B., Moore, M. A., and Flaks, A. (1982) Ultrastructural analysis of pancreatic carcinogenesis. V. Changes in differentiation of acinar cells during chronic treatment with N-nitrosobis(2-hydroxypropyl)amine. Carcinogenesis 3, 485–498.PubMedCrossRefGoogle Scholar
  24. 24.
    Feng, Z., Hu, W., Chen, J. X., et al. (2002) Preferential DNA damage and poor repair determine ras gene mutational hotspot in human cancer. J. Natl. Cancer Inst. 94, 1527–1536.PubMedGoogle Scholar
  25. 25.
    Okita, S., Tsutsumi, M., Onji, M., and Konishi, Y. (1995) p53 mutation without allelic loss and absence of mdm-2 amplification in a transplantable hamster pancreatic ductal adenocarcinoma and derived cell lines but not primary ductal adenocarcinomas in hamsters. Mol. Carcinog. 13, 266–271.PubMedCrossRefGoogle Scholar
  26. 26.
    Erill, N., Cuatrecasas, M., Sancho, F. J., et al. (1996) K-ras and p53 mutations in hamster pancreatic ductal adenocarcinomas and cell lines. Am. J. Pathol. 149, 1333–1339.PubMedGoogle Scholar
  27. 27.
    Flaks, B., Moore, M. A., and Flaks, A. (1981) Ultrastructural analysis of pancreatic carcinogenesis. IV. Pseudoductular transformation of acini in the hamster pancreas during N-nitroso-bis(2-hydroxypropyl)amine carcinogenesis. Carcinogenesis 2, 1241–1253.PubMedCrossRefGoogle Scholar
  28. 28.
    Flaks, B., Moore, M. A., and Flaks, A. (1982) Ultrastructural analysis of pancreatic carcinogenesis. VI. Early changes in hamster acinar cells induced by N-nitroso-bis(2-hydroxypropyl)amine. Carcinogenesis 3, 1063–1070.PubMedCrossRefGoogle Scholar
  29. 29.
    Hall, P. A. and Lemoine, N. R. (1993) Models of pancreatic cancer. Cancer Surv. 16, 135–155.PubMedGoogle Scholar
  30. 30.
    Rivera, J. A., Graeme-Cook, F., Werner, J., et al. (1997) A rat model of pancreatic ductal adenocarcinoma: Targeting chemical carcinogens. Surgery 122, 82–90.PubMedCrossRefGoogle Scholar
  31. 31.
    Rao, M. S. (1987) Animal models of exocrine pancreatic carcinogenesis. Cancer Metastas. Rev. 6, 665–676.CrossRefGoogle Scholar
  32. 32.
    Pour, P. M., Weide, L., Liu, G., et al. (1997) Experimental evidence for the origin of ductal-type adenocarcinoma from the islets of Langerhans. Am. J. Pathol. 150, 2167–2180.PubMedGoogle Scholar
  33. 33.
    Schaeffer, B. K., Zurlo, J., and Longnecker, D. S. (1990) Activation of c-Ki-ras not detectable in adenomas or adenocarcinomas arising in rat pancreas. Mol. Carcinog. 3, 165–170.PubMedCrossRefGoogle Scholar
  34. 34.
    Dissin, J., Mills, L. R., Mains, D. L., Black, O. Jr., and Webster, P. D. (1975) Experimental induction of pancreatic adenocarcinoma in rats. J. Natl. Cancer Inst. 55, 857–864.PubMedGoogle Scholar
  35. 35.
    Bockman, D. E., Black, O. Jr., Mills, L. R., Mainz, D. L., and Webster, P. D. (1976) Fine structure of pancreatic adenocarcinoma induced in rats by 7,12-dimethyl-benz(a)anthracene. J. Natl. Cancer Inst. 57, 931–936.PubMedGoogle Scholar
  36. 36.
    Albanese, C., Hulit, J., Sakamaki, T., and Pestell, R. G. (2002) Recent advances in inducible expression in transgenic mice. Semin. Cell Dev. Biol. 13, 129–141.PubMedCrossRefGoogle Scholar
  37. 37.
    Tuveson, D. A. and Jacks, T. (2002) Technologically advanced cancer modeling in mice. Curr. Opin. Genet. Dev. 12, 105–110.PubMedCrossRefGoogle Scholar
  38. 38.
    Yamamoto, A., Hen, R., and Dauer, W. T. (2001) The ons and offs of inducible transgenic technology: A review. Neurobiol. Dis. 8, 923–932.PubMedCrossRefGoogle Scholar
  39. 39.
    Grippo, P. J., Nowlin, P. S., Cassaday, R. D., and Sandgren, E. P. (2002) Cell-specific transgene expression from a widely transcribed promoter using Cre/lox in mice. Genesis 32, 277–286.PubMedCrossRefGoogle Scholar
  40. 40.
    Lewandoski, M. (2001) Conditional control of gene expression in the mouse. Nat. Rev. Genet. 2, 743–755.PubMedCrossRefGoogle Scholar
  41. 41.
    Sauer, B. (1998) Inducible gene targeting in mice using the Cre/lox system. Methods 14, 381–392.PubMedCrossRefGoogle Scholar
  42. 42.
    Hammer, R. E., Swift, G. H., Ornitz, D. M., et al. (1987) The rat elastase I regulatory element is an enhancer that directs correct cell specificity and developmental onset of expression in transgenic mice. Mol. Cell Biol. 7, 2956–2967.PubMedGoogle Scholar
  43. 43.
    Ornitz, D. M., Palmiter, R. D., Hammer, R. E., et al. (1985) Specific expression of an elastase-human growth hormone fusion gene in pancreatic acinar cells of transgenic mice. Nature 313, 600–602.PubMedCrossRefGoogle Scholar
  44. 44.
    De Lisle, R. C. and Logsdon, C. D. (1990) Pancreatic acinar cells in culture: Expression of acinar and ductal antigens in a growth-related manner. Eur. J. Cell Biol. 51, 64–75.PubMedGoogle Scholar
  45. 45.
    Yuan, S., Duguid, W. P., Agapitos, D., Wyllie, B., and Rosenberg, L. (1997) Phenotypic modulation of hamster acinar cells by culture in collagen matrix. Exp. Cell Res. 237, 247–258.PubMedCrossRefGoogle Scholar
  46. 46.
    Arias, A. E. and Bendayan, M. (1993) Differentiation of pancreatic acinar cells into duct-like cells in vitro. Lab. Invest. 69, 518–530.PubMedGoogle Scholar
  47. 47.
    Hall, P. A. and Lemoine, N. R. (1992) Rapid acinar to ductal transdifferentiation in cultured human exocrine pancreas. J. Pathol. 166, 97–103.PubMedCrossRefGoogle Scholar
  48. 48.
    Vila, M. R., Lloreta, J., and Real, F. X. (1994) Normal human pancreas cultures display functional ductal characteristics. Lab. Invest. 71, 423–431.PubMedGoogle Scholar
  49. 49.
    Wagner, M., Luhrs, H., Kloppel, G., Adler, G., and Schmid, R. M. (1998) Malignant transformation of duct-like cells originating from acini in transforming growth factor transgenic mice. Gastroenterology 115, 1254–1262.PubMedCrossRefGoogle Scholar
  50. 50.
    Quaife, C. J., Pinkert, C. A., Ornitz, D. M., Palmiter, R. D., and Brinster, R. L. (1987) Pancreatic neoplasia induced by ras expression in acinar cells of transgenic mice. Cell 48, 1023–1034.PubMedCrossRefGoogle Scholar
  51. 51.
    Ornitz, D. M., Hammer, R. E., Messing, A., Palmiter, R. D., and Brinster, R. L. (1987) Pancreatic neoplasia induced by SV40 T-antigen expression in acinar cells of transgenic mice. Science 238, 188–193.PubMedCrossRefGoogle Scholar
  52. 52.
    Sandgren, E. P., Luetteke, N. C., Palmiter, R. D., Brinster, R. L., and Lee, D. C. (1990) Overexpression of TGF alpha in transgenic mice: Induction of epithelial hyperplasia, pancreatic metaplasia, and carcinoma of the breast. Cell 61, 1121–1135.PubMedCrossRefGoogle Scholar
  53. 53.
    Sandgren, E. P., Quaife, C. J., Paulovich, A. G., Palmiter, R. D., and Brinster, R. L. (1991) Pancreatic tumor pathogenesis reflects the causative genetic lesion. Proc. Natl. Acad. Sci. USA 88, 93–97.PubMedCrossRefGoogle Scholar
  54. 54.
    Grippo, P. J., Nowlin, P. S., Demeure, M. J., Longnecker, D. S., and Sandgren, E. P. (2003) Preinvasive pancreatic neoplasia of ductal phenotype induced by acinar cell targeting of mutant kras in transgenic mice. Cancer Res. 63, 2016–2019.PubMedGoogle Scholar
  55. 55.
    Peat, N., Gendler, S. J., Lalani, N., Duhig, T., and Taylor-Papadimitriou, J. (1992) Tissue-specific expression of a human polymorphic epithelial mucin (MUC1) in transgenic mice. Cancer Res. 52, 1954–1960.PubMedGoogle Scholar
  56. 56.
    Goetze, J. P., Nielsen, F. C., Burcharth, F., and Rehfeld, J. F. (2000) Closing the gastrin loop in pancreatic carcinoma: Coexpression of gastrin and its receptor in solid human pancreatic adenocarcinoma. Cancer 88, 2487–2494.PubMedCrossRefGoogle Scholar
  57. 57.
    Watson, S. A. and Caplin, M. (2002) Correspondence re: Weinberg et al., Cholecystokinin and gastrin levels are not elevated in pancreatic carcinoma. Cancer Epidemiol. Biomark. Prev. 10, 721–722. Cancer Epidemiol. Biomark. Prev. 11, 219.Google Scholar
  58. 58.
    Weinberg, D. S., Heyt, G J., Cavanagh, M., Pitchon, D., McGlynn, K. A., and London, W. T. (2001) Cholecystokinin and gastrin levels are not elevated in human pancreatic adenocarcinoma. Cancer Epidemiol. Biomark. Prev. 10, 721–722.Google Scholar
  59. 59.
    Mukherjee, P., Ginardi, A. R., Madsen, C. S., et al. (2000) Mice with spontaneous pancreatic cancer naturally develop MUC-1-specific CTLs that eradicate tumors when adoptively transferred. J. Immunol. 165, 3451–3460.PubMedGoogle Scholar
  60. 60.
    Yen, T. W., Sandgren, E. P., Liggitt, H. D., et al. (2002) The gastrin receptor promotes pancreatic growth in transgenic mice. Pancreas 24, 121–129.PubMedCrossRefGoogle Scholar
  61. 61.
    Clerc, P., Leung-Theung-Long, S., Wang, T. C., et al. (2002) Expression of CCK2 receptors in the murine pancreas: Proliferation, transdifferentiation of acinar cells, and neoplasia. Gastroenterology 122, 428–437.PubMedCrossRefGoogle Scholar
  62. 62.
    Grippo, P. J. and Sandgren, E. P. (2000) Highly invasive transitional cell carcinoma of the bladder in a simian virus 40 T-antigen transgenic mouse model. Am. J. Pathol. 157, 805–813.PubMedCrossRefGoogle Scholar
  63. 63.
    Brembeck, F. H., Schreiber, F. S., Deramaudt, T. B., et al. (2003) The mutant K-ras oncogene causes pancreatic periductal lymphocytic infiltration and gastric mucous neck cell hyperplasia in transgenic mice. Cancer Res. 63, 2005–2009.PubMedGoogle Scholar
  64. 64.
    Gu, G., Dubauskaite, J., and Melton, D. A. (2002) Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 129, 2447–2457.PubMedGoogle Scholar
  65. 65.
    Herrera, P. L., Nepote, V., and Delacour, A. (2002) Pancreatic cell lineage analyses in mice. Endocrine 19, 267–278.PubMedCrossRefGoogle Scholar
  66. 66.
    Song, S. Y., Gannon, M., Washington, M. K., et al. (1999) Expansion of Pdx1-expressing pancreatic epithelium and islet neogenesis in transgenic mice over-expressing transforming growth factor alpha. Gastroenterology 117, 1416–1426.PubMedCrossRefGoogle Scholar
  67. 67.
    Holland, A. M., Hale, M. A., Kagami, H., Hammer, R. E., and MacDonald, R. J. (2002) Experimental control of pancreatic development and maintenance. Proc. Natl. Acad. Sci. USA 99, 12236–12241.PubMedCrossRefGoogle Scholar
  68. 68.
    Donehower, L. A., Harvey, M., Slagle, B. L., et al. (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221.PubMedCrossRefGoogle Scholar
  69. 69.
    Serrano, M., Lee, H., Chin, L., Cordon-Cardo, C., Beach, D., and DePinho, R. A. (1996) Role of the INK4a locus in tumor suppression and cell mortality. Cell 85, 27–37.PubMedCrossRefGoogle Scholar
  70. 70.
    Sirard, C., de la Pompa, J. L., Elia, A., et al. (1998) The tumor suppressor gene Smad4/Dpc4 is required for gastrulation and later for anterior development of the mouse embryo. Genes Dev. 12, 107–119.PubMedCrossRefGoogle Scholar
  71. 71.
    Sharpless, N. E., Alson, S., Chan, S., Silver, D. P., Castrillon, D. H., and DePinho, R. A. (2002) p16(INK4a) and p53 deficiency cooperate in tumorigenesis. Cancer Res. 62, 2761–2765.PubMedGoogle Scholar
  72. 72.
    Yang, X., Li, C., Herrera, P. L., and Deng, C. X. (2002) Generation of Smad4/Dpc4 conditional knockout mice. Genesis 32, 80–81.PubMedCrossRefGoogle Scholar
  73. 73.
    Wagner, M., Greten, F. R., Weber, C. K., et al. (2001) A murine tumor progression model for pancreatic cancer recapitulating the genetic alterations of the human disease. Genes Dev. 15, 286–293.PubMedCrossRefGoogle Scholar
  74. 74.
    Bardeesy, N., Morgan, J., Sinha, M., et al. (2002) Obligate roles for p16(Ink4a) and p19(Arf)-p53 in the suppression of murine pancreatic neoplasia. Mol. Cell Biol. 22, 635–643.PubMedCrossRefGoogle Scholar
  75. 75.
    Cullingworth, J., Hooper, M. L., Harrison, D. J., et al. (2002) Carcinogen-induced pancreatic lesions in the mouse: Effect of Smad4 and Apc genotypes. Oncogene 21, 4696–4701.PubMedCrossRefGoogle Scholar
  76. 76.
    Takaku, K., Miyoshi, H., Matsunaga, A., Oshima, M., Sasaki, N., and Taketo, M. M. (1999) Gastric and duodenal polyps in Smad4 (Dpc4) knockout mice. Cancer Res. 59, 6113–6117.PubMedGoogle Scholar
  77. 77.
    Morikane, K., Tempero, R., Sivinski, C. L., Kitajima, S., Gendler, S. J., and Hollingsworth, M. A. (2001) Influence of organ site and tumor cell type on MUC1-specific tumor immunity. Int. Immunol. 13, 233–240.PubMedCrossRefGoogle Scholar
  78. 78.
    Bouvet, M., Wang, J., Nardin, S. R., et al. (2002) Real-time optical imaging of primary tumor growth and multiple metastatic events in a pancreatic cancer orthotopic model. Cancer Res. 62, 1534–1540.PubMedGoogle Scholar
  79. 79.
    Lee, N. C., Bouvet, M., Nardin, S., et al. (2000) Antimetastatic efficacy of adjuvant gemcitabine in a pancreatic cancer orthotopic model. Clin. Exp. Metastas. 18, 379–384.CrossRefGoogle Scholar
  80. 80.
    Alves, F., Contag, S., Missbach, M., et al. (2001) An orthotopic model of ductal adenocarcinoma of the pancreas in severe combined immunodeficient mice representing all steps of the metastatic cascade. Pancreas 23, 227–235.PubMedCrossRefGoogle Scholar
  81. 81.
    Tarbe, N., Evtimova, V., Burtscher, H., Jarsch, M., Alves, F., and Weidle, U. H. (2001) Transcriptional profiling of cell lines derived from an orthotopic pancreatic tumor model reveals metastasis-associated genes. Anticancer Res. 21, 3221–3228.PubMedGoogle Scholar
  82. 82.
    Tsuzuki, Y., Mouta Carreira, C., Bockhorn, M., Xu, L., Jain, R. K., and Fukumura, D. (2001) Pancreas microenvironment promotes VEGF expression and tumor growth: Novel window models for pancreatic tumor angiogenesis and microcirculation. Lab. Invest. 81, 1439–1451.Google Scholar
  83. 83.
    Bloomston, M., Shafii, A., Zervos, E. E., and Rosemurgy, A. S. (2002) TIMP-1 overexpression in pancreatic cancer attenuates tumor growth, decreases implantation and metastasis, and inhibits angiogenesis. J. Surg. Res. 102, 39–44.PubMedCrossRefGoogle Scholar
  84. 84.
    Wen, Y., Yan, D. H., Wang, B., et al. (2001) p202, an interferon-inducible protein, mediates multiple antitumor activities in human pancreatic cancer xenograft models. Cancer Res. 61, 7142–7147.PubMedGoogle Scholar
  85. 85.
    Bruns, C. J., Harbison, M. T., Kuniyasu, H., Eue, I., and Fidler, I. J. (1999) In vivo selection and characterization of metastatic variants from human pancreatic adenocarcinoma by using orthotopic implantation in nude mice. Neoplasia 1, 50–62.PubMedCrossRefGoogle Scholar
  86. 86.
    Solorzano, C. C., Baker, C. H., Tsan, R., et al. (2001) Optimization for the blockade of epidermal growth factor receptor signaling for therapy of human pancreatic carcinoma. Clin. Cancer Res. 7, 2563–2572.PubMedGoogle Scholar
  87. 87.
    Denham, D. W., Franz, M. G., Denham, W., et al. (1998) Directed antisense therapy confirms the role of protein kinase C-alpha in the tumorigenicity of pancreatic cancer. Surgery 124, 218–223; discussion 223–214.PubMedCrossRefGoogle Scholar
  88. 88.
    Morioka, C. Y., Saito, S., Kita, K., and Watanabe, A. (2000) Curative resection of orthotopically implanted pancreatic cancer in Syrian golden hamsters. Int. J. Pancreatol. 28, 207–213.PubMedCrossRefGoogle Scholar
  89. 89.
    Juhl, H., Sievers, M., Baltzer, K., et al. (1995) A monoclonal antibody-cobra venom factor conjugate increases the tumor-specific uptake of a 99mTc-labeled anti-carcinoembryonic antigen antibody by a two-step approach. Cancer Res. 55, 5749s–5755s.PubMedGoogle Scholar
  90. 90.
    Matsushita, A., Onda, M., Uchida, E., Maekawa, R., and Yoshioka, T. (2001) Antitumor effect of a new selective matrix metalloproteinase inhibitor, MMI-166, on experimental pancreatic cancer. Int. J. Cancer 92, 434–440.PubMedCrossRefGoogle Scholar
  91. 91.
    Ng, S. S., Tsao, M. S., Nicklee, T., and Hedley, D. W. (2001) Wortmannin inhibits pkb/akt phosphorylation and promotes gemcitabine antitumor activity in orthotopic human pancreatic cancer xenografts in immunodeficient mice. Clin. Cancer Res. 7, 3269–3275.PubMedGoogle Scholar
  92. 92.
    Zervos, E. E., Shafii, A. E., and Rosemurgy, A. S. (1999) Matrix metalloproteinase (MMP) inhibition selectively decreases type II MMP activity in a murine model of pancreatic cancer. J. Surg. Res. 81, 65–68.PubMedCrossRefGoogle Scholar
  93. 93.
    Hotz, H. G., Hines, O. J., Hotz, B., Foitzik, T., Buhr, H. J., and Reber, H. A. (2003) Evaluation of vascular endothelial growth factor blockade and matrix metalloproteinase inhibition as a combination therapy for experimental human pancreatic cancer. J. Gastrointest. Surg. 7, 220–227; discussion 227–228.PubMedCrossRefGoogle Scholar
  94. 94.
    Alves, F., Borchers, U., Padge, B., et al. (2001) Inhibitory effect of a matrix metalloproteinase inhibitor on growth and spread of human pancreatic ductal adenocarcinoma evaluated in an orthotopic severe combined immunodeficient (SCID) mouse model. Cancer Lett. 165, 161–170.PubMedCrossRefGoogle Scholar
  95. 95.
    Fu, X., Guadagni, F., and Hoffman, R. M. (1992) A metastatic nude-mouse model of human pancreatic cancer constructed orthotopically with histologically intact patient specimens. Proc. Natl. Acad. Sci. USA 89, 5645–5649.PubMedCrossRefGoogle Scholar
  96. 96.
    Farre, L., Casanova, I., Guerrero, S., Trias, M., Capella, G., and Mangues, R. (2002) Heterotopic implantation alters the regulation of apoptosis and the cell cycle and generates a new metastatic site in a human pancreatic tumor xenograft model. FASEB J. 16, 975–982.PubMedCrossRefGoogle Scholar
  97. 97.
    Liu, C. D., Tilch, L., Kwan, D., and McFadden, D. W. (2002) Vascular endothelial growth factor is increased in ascites from metastatic pancreatic cancer. J. Surg. Res. 102, 31–34.PubMedCrossRefGoogle Scholar
  98. 98.
    Morioka, C. Y., Saito, S., Ohzawa, K., and Watanabe, A. (2000) Homologous orthotopic implantation models of pancreatic ductal cancer in Syrian golden hamsters: Which is better for metastasis research—cell implantation or tissue implantation? Pancreas 20, 152–157.PubMedCrossRefGoogle Scholar
  99. 99.
    Hotz, H. G., Reber, H. A., Hotz, B., et al. (2001) An improved clinical model of orthotopic pancreatic cancer in immunocompetent Lewis rats. Pancreas 22, 113–121.PubMedCrossRefGoogle Scholar
  100. 100.
    He, Z., Evelhoch, J. L., Mohammad, R. M., et al. (2000) Magnetic resonance imaging to measure therapeutic response using an orthotopic model of human pancreatic cancer. Pancreas 21, 69–76.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Paul J. Grippo
    • 1
  • Eric P. Sandgren
    • 2
  1. 1.Department of SurgeryNorthwestern University Medical SchoolChicago
  2. 2.Department of Pathobiological Sciences, School of Veterinary MedicineUniversity of Wisconsin-MadisonMadison

Personalised recommendations