DNA Methylation Analysis in Human Cancer

  • Carmelle D. Curtis
  • Michael Goggins
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 103)


Many tumor suppressor genes (such as p16, Rb, VHL, E-cadherin, and hMLH1) that are silenced by mutation are also inactivated by gene silencing through DNA methylation. Characterization of genes hypermethylated in human cancers but not in normal tissues not only provides insights into cancer biology but also permits the use of methylation-specific polymerase chain reaction-based assays that could serve as diagnostic tests for the early detection and early diagnosis of this disease. To this end, research aimed at the identification and characterization of the methylation status of known and candidate tumor suppressor genes is one strategy for finding putative diagnostic markers. This chapter describes several methods of methylation analysis.

Key Words

Methylation analysis polymerase chain reaction CpG island DNA methyl-transferase restriction enzyme digestion bisulfite modification immunohistochemistry high performance liquid chromatography methylation-specific oligonucleotide microarray representation differential analysis gene expression profiling 5-Aza-2′-deoxycytidine restriction landmark genome scanning 


  1. 1.
    Bird, A. (1992) The essentials of DNA methylation. Cell 70, 5–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Bird, A. (1999) DNA methylation de novo. Science 286, 2287–2278.PubMedCrossRefGoogle Scholar
  3. 3.
    Mohandas, T., Sparkes, R. S., and Shapiro, L. J. (1981) Reactivation of an inactive human X chromosome: Evidence for X inactivation by DNA methylation. Science 211, 393–396.PubMedCrossRefGoogle Scholar
  4. 4.
    Okano, M., et al. (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257.PubMedCrossRefGoogle Scholar
  5. 5.
    Okano, M., Xie, S., and Li, E. (1998) Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat. Genet. 19, 219–220.PubMedCrossRefGoogle Scholar
  6. 6.
    Yoder, J. A., Walsh, C. P., and Bestor, T. H. (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 13, 335–340.PubMedCrossRefGoogle Scholar
  7. 7.
    Baylin, S. B., et al. (1998) Alterations in DNA methylation: A fundamental aspect of neoplasia. Adv. Cancer Res. 72, 141–196.PubMedCrossRefGoogle Scholar
  8. 8.
    Herman, J. G., et al. (1996) Methylation-specific PCR: A novel PCR assay for methylation status of CpG islands. Proc. Natl. Acad. Sci. USA 93, 9821–9826.PubMedCrossRefGoogle Scholar
  9. 9.
    Herman, J. G., et al. (1998) Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc. Natl. Acad. Sci. USA 95, 6870–6875.PubMedCrossRefGoogle Scholar
  10. 10.
    Rountree, M. R., et al. (2001) DNA methylation, chromatin inheritance, and cancer. Oncogene 20, 3156–3165.PubMedCrossRefGoogle Scholar
  11. 11.
    Ueki, T., et al. (2000) Hypermethylation of multiple genes in pancreatic adenocarcinoma. Cancer Res. 60, 1835–1839.PubMedGoogle Scholar
  12. 12.
    Gama-Sosa, M. A., et al. (1983) The 5-methylcytosine content of DNA from human tumors. Nucl. Acids Res. 11, 6883–6894.PubMedCrossRefGoogle Scholar
  13. 13.
    Feinberg, A. P., et al. (1988) Reduced genomic 5-methylcytosine content in human colonic neoplasia. Cancer Res. 48, 1159–1161.PubMedGoogle Scholar
  14. 14.
    Piyathilake, C. J., et al. (2001) Altered global methylation of DNA: An epigenetic difference in susceptibility for lung cancer is associated with its progression. Hum. Pathol. 32, 856–862.PubMedCrossRefGoogle Scholar
  15. 15.
    Gitan, R. S., et al. (2002) Methylation-specific oligonucleotide microarray: A new potential for high-throughput methylation analysis. Genome Res. 12, 158–164.PubMedCrossRefGoogle Scholar
  16. 16.
    Suzuki, H., et al. (2002) A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nat. Genet. 31, 141–149.PubMedCrossRefGoogle Scholar
  17. 17.
    Yamashita, K., et al. (2002) Pharmacologic unmasking of epigenetically silenced tumor suppressor genes in esophageal squamous cell carcinoma. Cancer Cell. 2, 485–495.PubMedCrossRefGoogle Scholar
  18. 18.
    Sato, N., et al. (2003) Discovery of novel targets for aberrant methylation in pancreatic carcinoma using high-throughput microarrays. Cancer Res. 63, 3735–2742.PubMedGoogle Scholar
  19. 19.
    Costello, J. F., Plass, C., and Cavenee, W. K. (2002) Restriction landmark genome scanning. Methods Mol. Biol. 200, 53–70.PubMedGoogle Scholar
  20. 20.
    Costello, J. F., Smiraglia, D. J., and Plass, C. (2002) Restriction landmark genome scanning. Methods 27, 144–149.PubMedCrossRefGoogle Scholar
  21. 21.
    Frommer, M., et al. (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl. Acad. Sci. USA 89, 1827–1831.PubMedCrossRefGoogle Scholar
  22. 22.
    Reynaud, C., et al. (1992) Monitoring of urinary excretion of modified nucleo-sides in cancer patients using a set of six monoclonal antibodies. Cancer Lett. 61, 255–262.PubMedCrossRefGoogle Scholar
  23. 23.
    Xiong, Z. and Laird, P. W. (1997) COBRA: A sensitive and quantitative DNA methy-lation assay. Nucl. Acids Res. 25, 2532–2534.PubMedCrossRefGoogle Scholar
  24. 24.
    Gehrke, C. W., et al. (1984) Quantitative reversed-phase high-performance liquid chromatography of major and modified nucleosides in DNA. J. Chromatogr. 301, 199–219.PubMedCrossRefGoogle Scholar
  25. 25.
    Lisitsyn, N. and Wigler, M. (1993) Cloning the differences between two complex genomes. Science 259, 946–951.PubMedCrossRefGoogle Scholar
  26. 26.
    Schutte, M., et al. (1995) Identification by representational difference analysis of a homozygous deletion in pancreatic carcinoma that lies within the BRCA2 region. Proc. Natl. Acad. Sci. USA 92, 5950–5954.PubMedCrossRefGoogle Scholar
  27. 27.
    Grunau, C., Clark, S. J., and Rosenthal, A. (2001) Bisulfite genomic sequencing: systematic investigation of critical experimental parameters. Nucl. Acids Res. 29, E65–E65.PubMedCrossRefGoogle Scholar
  28. 28.
    Baskaran, N., et al. (1996) Uniform amplification of a mixture of deoxyribonucleic acids with varying GC content. Genome Res. 6, 633–638.PubMedCrossRefGoogle Scholar
  29. 29.
    Toyota, M., et al. (1999) CpG island methylator phenotype in colorectal cancer. Proc. Natl. Acad. Sci. USA 96, 8681–8686.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Carmelle D. Curtis
    • 1
  • Michael Goggins
    • 1
    • 2
    • 3
  1. 1.Department of PathologyThe Johns Hopkins University School of MedicineBaltimore
  2. 2.Department of MedicineThe Johns Hopkins University School of MedicineBaltimore
  3. 3.The Oncology CenterThe Johns Hopkins University School of MedicineBaltimore

Personalised recommendations