Advertisement

Culture and Immortalization of Pancreatic Ductal Epithelial Cells

  • Terence Lawson
  • Michel Ouellette
  • Carol Kolar
  • Michael Hollingsworth
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 103)

Abstract

Some populations of the epithelial cells from the duct and ductular network of the mammalian pancreas have been isolated and maintained in vitro for up to 3 mo. These cells express many of the surface factors that are unique to them in vivo. They also retain significant drug-and carcinogen-metabolizing capacity in vitro. In this chapter we review the progression of the methods for the isolation, culture and maintenance in vitro for these cells from the earliest when only duct/ductular fragments were obtainable to the current ones which provide cells. The critical steps in the isolation process are identified and strategies are provided to facilitate these steps. These include the selection of tissue digestive enzymes, the importance of extensive mincing before culture and the importance of roles of some co-factors used in the culture medium.

Key Words

Immortalization hTERT senescence telomerase ductal epithelial cells 

References

  1. 1.
    Jones, R. T., Hudson, E. A., and Resau, J. H. (1981) A review of in vitro and in vivo culture techniques for the study of pancreatic carcinogenesis. Cancer 47, 1490–1496.PubMedCrossRefGoogle Scholar
  2. 2.
    Githens, S., Holmquist, D. R., Whelan, J. F., and Ruby, J. R. (1981) Morphologic and biochemical characteristics of isolated and cultured pancreatic ducts. Cancer 47, 1505–1512.PubMedCrossRefGoogle Scholar
  3. 3.
    Githens, S. and Whelan, J. F. (1983) Isolation and culture of hamster pancreatic ducts. J. Tissue Cult. Methods 8, 97–103.CrossRefGoogle Scholar
  4. 4.
    Richards, J., Pasco, D., Yang, J., Guzman, R., and Nandi, S. (1983) Comparison of the growth of normal and neoplastic mouse mammary cells on plastic, on collagen gels and in collagen gels. Exp. Cell Res. 146, 1–14.PubMedCrossRefGoogle Scholar
  5. 5.
    Hootman, S. R. and Logsdon, C. D. (1998) Isolation and monolayer culture of guinea pig pancreatic duct epithelial cells. In Vitro 24, 566–574.Google Scholar
  6. 6.
    Lefebvre, V. H., Otonkoski, T., Ustinov, J., Huotari, M. A., Pipeleers, D. G, and Bouwens, L. (1998) Culture of adult human islet preparations with hepatocyte growth factor and 804G matrix is mitogenic for duct cells but not for beta cells. Diabetes 47, 134–137.PubMedCrossRefGoogle Scholar
  7. 7.
    Langhofer, M., Hopkinson, S. B., and Jones, J. C. R. (1993) The matrix secreted by 804G cells contains laminin-related components that participate in hemidesmosome assembly in vitro. J. Cell Sci. 105, 753–764.PubMedGoogle Scholar
  8. 8.
    Parsa, I., Marsh, W. H., and Sutton, A. L. (1980) An in vitro model of pancreas carcinogenesis. Am. J. Pathol. 98, 649–662.PubMedGoogle Scholar
  9. 9.
    Parsa, I., Marsh, W. H., Sutton, A. L., and Butt, K. M. H. (1981) Effects of dimethylnitrosamine on organ-cultured adult human pancreas. Am. J. Pathol. 102, 403–411.PubMedGoogle Scholar
  10. 10.
    Resau, J. H., Cottrell, J. R., Elligett, K. A., and Hudson, E. A. (1987) Cell injury and regeneration of human epithelium in organ culture. Cell Biol. Toxicol. 3, 441–458.PubMedCrossRefGoogle Scholar
  11. 11.
    Harris, A. and Coleman, L. (1988) Cultured epithelial cells derived from foetal pancreas as a model for the study of cystic fibrosis: Further analysis on the origins and nature of the cell types. J. Cell Sci. 90, 73–77.PubMedGoogle Scholar
  12. 12.
    Harris, A., Chalkley, G., Goodman, S., and Coleman, L. (1991) Expression of the cystic fibrosis gene in human development. Development 113, 305–310.PubMedGoogle Scholar
  13. 13.
    Githens, S., Patke, C. L., and Schexnayder, J. A. (1994) Isolation and culture of rhesus monkey pancreatic ductules ductule-like epithelium. Pancreas 9, 20–31.PubMedCrossRefGoogle Scholar
  14. 14.
    Verme, T. B. and Hootman, S. R. (1990) Regulation of pancreatic duct epithelial growth in vitro. Am. J. Physiol. 258, G833–G840.PubMedGoogle Scholar
  15. 15.
    Vila, M. R., Lloreta, J., Schussler, M. H., Berrozpe, G, Welt, S., and Real, F. X. (1995) New pancreas cancers cell lines that represent distinct stages of ductal differentiation. Lab. Invest. 72, 395–404.PubMedGoogle Scholar
  16. 16.
    Chambers, J. A. and Harris, A. (1993) Expression of the cystic fibrosis gene and the major pancreatic mucin gene, MUC1, in human ductal epithelial cells. J. Cell Sci. 105, 417–422.PubMedGoogle Scholar
  17. 17.
    Kolar, C, Caffrey, T., Hollingsworth, M., et al. (1997) Duct epithelial cells cultured from human pancreas processed for transplantation retain differentiated ductal characteristics. Pancreas 15, 265–271.PubMedCrossRefGoogle Scholar
  18. 18.
    Kerr-Conte, J., Pattou, F., Lecomte-Houcke, M., et al. (1996) Ductal cyst formation in collagen-embedded adult human islet preparations. A means to the reproduction of nesidioblastosis in vitro. Diabetes 45, 1108–1114.PubMedCrossRefGoogle Scholar
  19. 19.
    Trautmann, B., Schlitt, H.-J., Hahn, E. G, and Lohr, M. (1993) Isolation, culture, and characterization of human pancreatic duct cells. Pancreas 8, 248–254.PubMedCrossRefGoogle Scholar
  20. 20.
    Ryu, B., Jones, J., Hollingsworth, M. A., Hruban, R. H., and Kern, S. E. (2001) Invasion-specific genes in malignancy: Serial analysis of gene expression comparisons of primary and passaged cancers. Cancer Res. 61, 1833–1838.PubMedGoogle Scholar
  21. 21.
    Harris, A. and Coleman, L. (1987) Establishment of a tissue culture system for epithelial cells derived from human pancreas: A model for the study of cystic fibrosis. J. Cell Sci. 87, 695–703.PubMedGoogle Scholar
  22. 22.
    Singer, K. H., Scearce, R. M., Tuck, D. T., Whichard, L. P., Denning, S. M., and Haynes, B. F. (1989) Removal of fibroblasts form human epithelial cell cultures with use of a complement fixing monoclonal antibody reactive with human fibroblasts and monocytes/macrophages. J. Invest. Dermatol. 92, 166–170.PubMedCrossRefGoogle Scholar
  23. 23.
    Harris, C. C, Autrup, H., Stoner, G, et al. (1977) Metabolism of benzo(a)pyrene and 7,12-dimethylbenz(a)anthracene in cultured human bronchus and pancreatic duct. Cancer Res. 37, 3349–3355.PubMedGoogle Scholar
  24. 24.
    Jones, R. T., Barrett, L. A., van Haaften, C, Harris, C. C, and Trump, B. F. (1977) Carcinogenesis in the pancreas. I. Long-term explant culture of human and bovine pancreatic ducts. J. Natl. Cancer Inst. 58, 557–565.PubMedGoogle Scholar
  25. 25.
    Lawson, T. and Kolar, C. (1994) Mutagenicity of heterocyclic amines when activated by pancreas tissue. Mutation Res. 325, 125–128.PubMedCrossRefGoogle Scholar
  26. 26.
    Hyde, K, Harrison, D., Hollingsworth, M. A., and Harris, A. (1999) Chloride-bicarbonate exchangers in human fetal pancreas. Biochem. Biophys. Res. Commun. 263, 315–321.PubMedCrossRefGoogle Scholar
  27. 27.
    de Lisle, R. C. and Logsdon, C. D. (1990) Pancreatic acinar cells in culture: Expression of acinar and ductal antigens in a growth-related manner. Eur. J. Cell Biol. 51, 64–75.PubMedGoogle Scholar
  28. 28.
    Hall, P. A. and Lemoine, N. R. (1993) Rapid acinar to ductal transdifferentiation in cultured human exocrine pancreas. J. Pathol. 166, 97–103.CrossRefGoogle Scholar
  29. 29.
    Vilá, M. R., Lloreta, J., and Real, F. X. (1994) Normal human pancreas cultures display functional ductal characteristics. Lab. Invest. 71, 423–431.PubMedGoogle Scholar
  30. 30.
    Yuan, S., Rosenberg, L., Paraskevas, S., Agapitos, D., and Duguid, W. P. (1996) Transdifferentiation of human islets to pancreatic ductal cells in collagen matrix culture. Differentiation 61, 67–75.PubMedCrossRefGoogle Scholar
  31. 31.
    Paddenberg, R., Flocke, K., Elsasser, H. P., Lesch, G., Heidtmann, H. H., and Mannherz, H. G. (1998) Phenotypical changes of a human pancreatic adenocarcinoma cell line after selection on laminin-1/nidogen (LM/Ng) substratum. Eur. J. Cell Biol. 76, 51–64.Google Scholar
  32. 32.
    Bonner-Weir, S., Taneja, M., Weir, G C, et al. (2000) In vitro cultivation of human islets from expanded ductal tissue. Proc. Natl. Acad. Sci. USA 97, 7999–8004.PubMedCrossRefGoogle Scholar
  33. 33.
    Gmyr, V., Kerr-Conte, J., Vanderwalle, B., Proye, C, Lefebvre, J., and Pattou, F. (2001) Human pancreatic ductal cells: Large scale isolation and expansion. Cell Transplant. 10, 109–121.PubMedGoogle Scholar
  34. 34.
    Gmyr, V., Kerr-Conte, J., Belaich, S., et al. (2000) Adult human cytokeratin 19-positive cells reexpress insulin promoter factor 1 in vitro: Further evidence for pluripotent pancreatic stem cells in humans. Diabetes 49, 1671–1680.PubMedCrossRefGoogle Scholar
  35. 35.
    Ramiya, V. K., Maraist, M., Arfors, K. E., Schatz, D. A., Peck, S. B., and Cornelius, J. G (2000) Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells. Nat. Med. 6, 278–282.PubMedCrossRefGoogle Scholar
  36. 36.
    Ouellette, M. M. and Lee, K. (2001) Telomerase: Diagnostics, cancer therapeutics and tissue engineering. Drug Discov. Today 6, 1231–1237.PubMedCrossRefGoogle Scholar
  37. 37.
    Bodnar, A. G., Ouellette, M., Frolkis, M., et al. (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349–352.PubMedCrossRefGoogle Scholar
  38. 38.
    Morales, C. P., Holt, S. E., Ouellette, M., et al. (1999) Absence of cancer-associated changes in human fibroblasts immortalized with telomerase. Nat. Genet. 21, 115–118.PubMedCrossRefGoogle Scholar
  39. 39.
    Jiang, X. R., Jimenez, G, Chang, E., et al. (1999) Telomerase expression in human somatic cells does not induce changes associated with a transformed phenotype. Nat. Genet. 21, 111–114.PubMedCrossRefGoogle Scholar
  40. 40.
    Shay, J. W. and Wright, W. E. (2001) Aging. When do telomeres matter? Science 291, 839–840.PubMedCrossRefGoogle Scholar
  41. 41.
    Furukawa, T., Duguid, W. P., Rosenberg, L., Viallet, J., Galloway, D. A., and Tsao, M. S. (1996) Long-term culture and immortalization of epithelial cells from normal adult human pancreatic ducts transfected by the E6E7 gene of human papilloma virus 16. Am. J. Pathol. 148, 1763–1770.PubMedGoogle Scholar
  42. 42.
    Ouyang, H., Mou, L. J., Luk, C, et al. (2000) Immortal human pancreatic duct epithelial cell lines with near normal genotype and phenotype. Am. J. Pathol. 157, 1623–1631.PubMedCrossRefGoogle Scholar
  43. 43.
    Jesnowski, R., Muller, P., Schareck, W., Liebe, S., and Lohr, M. (1999) Immortalized pancreatic duct cells in vitro and in vivo. Ann. NY Acad. Sci. 880, 50–65.PubMedCrossRefGoogle Scholar
  44. 44.
    Halbert, C. L., Demers, G. W., and Galloway, D. A. (1992) The E6 and E7 genes of human papillomavirus type 6 have weak immortalizing activity in human epithelial cells. J. Virol. 66, 2125–2134.PubMedGoogle Scholar
  45. 45.
    Ouellette, M. M., Aisner, D. L., Savre-Train, I., Wright, W. E., and Shay, J. W. (1999) Telomerase activity does not always imply telomere maintenance. Biochem. Biophys. Res. Commun. 254, 795–803.PubMedCrossRefGoogle Scholar
  46. 46.
    Counter, C. M., Hahn, W. C, Wei, W., et al. (1998) Dissociation among in vitro telomerase activity, telomere maintenance, and cellular immortalization. Proc. Natl. Acad. Sci. USA 95, 14723–14728.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Terence Lawson
    • 1
  • Michel Ouellette
    • 2
  • Carol Kolar
    • 2
  • Michael Hollingsworth
    • 2
  1. 1.Department of Pharmaceutical Sciences, Eppley Institute for Research in Cancer and Allied DiseasesUniversity of Nebraska Medical CenterOmaha
  2. 2.Eppley Institute for Research in Cancer and Allied DiseasesUniversity of Nebraska Medical CenterOmaha

Personalised recommendations