Advertisement

Identification and Analysis of Precursors to Invasive Pancreatic Cancer

  • Ralph H. Hruban
  • Robb E. Wilentz
  • Anirban Maitra
Protocol
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 103)

Abstract

Histologically distinct noninvasive precursor lesions have been recognized in the pancreas for close to a century. The recent development of a consistent reproducible nomenclature and classification system for these lesions has been a major advance in the study of these noninvasive precursors. The “pancreatic intraepithelial neoplasia” or PanIN system was developed at a National Cancer Institutes sponsored think tank in Park City, Utah. Numerous studies have now demonstrated that genetic alterations in cancer-associated genes are more common in higher grade PanIN lesions then they are in lower grade PanIN lesions, and that higher grade PanIN lesions have many of the same genetic alterations that are found in invasive ductal adenocarcinomas of the pancreas. Thus, just as there is a progression in the colorectal of adenomas to invasive adenocarcinoma, so too is there a progression in the pancreas of histologically low-grade PanIN, to high-grade PanIN to invasive ductal adenocarcinoma.

Key Words

Precursor panIN neoplasia intraepithelial in situ 

References

  1. 1.
    Greenlee, R. T., Hill-Harmon, M. B., Murray, T., and Thun, M. (2001) Cancer Statistics, 2001. CA Cancer J. Clin. 51, 16–36.CrossRefGoogle Scholar
  2. 2.
    Warshaw, A. L. and Castillo, C. F. D. (1992) Pancreatic carcinoma. N. Engl. J. Med. 326, 455–465.PubMedCrossRefGoogle Scholar
  3. 3.
    Niederhuber, J. E., Brennan, M. F., and Menck, H. R. (1995) The national cancer data base report on pancreatic cancer. Cancer 76, 1671–1677.PubMedCrossRefGoogle Scholar
  4. 4.
    Goggins, M., Canto, M., and Hruban, R. H. (2000) Can we screen high-risk individuals to detect early pancreatic carcinoma? J. Surg. Oncol. 74, 243–248.PubMedCrossRefGoogle Scholar
  5. 5.
    Hruban, R. H., Canto, M. I., and Yeo, C. J. (2001) Prevention of pancreatic cancer and strategies for management of familial pancreatic cancer. Dig. Dis. 19, 76–84.PubMedCrossRefGoogle Scholar
  6. 6.
    Hruban, R. H., Wilentz, R. E., and Kern, S. E. (2000) Genetic progression in the pancreatic ducts. Am. J. Pathol. 156, 1821–1825.PubMedCrossRefGoogle Scholar
  7. 7.
    Hruban, R. H., Wilentz, R. E., Goggins, M., Offerhaus, G. J. A., Yeo, C. J., and Kern, S. E. (1999) Pathology of incipient pancreatic cancer. Ann. Oncol. 10, S9–S11.CrossRefGoogle Scholar
  8. 8.
    McCarthy, D. M., Brat, D. J., Wilentz, R. E., et al. (2001) Pancreatic intraepithelial neoplasia and infiltrating adenocarcinoma: Analysis of progession and recurrence by DPC4 immunohistochemical labeling. Hum. Pathol. 32, 638–642.PubMedCrossRefGoogle Scholar
  9. 9.
    Wilentz, R. E., Geradts, J., Maynard, R., et al. (1998) Inactivation of the pl6 (INK4A) tumor-suppressor gene in pancreatic duct lesions: Loss of intranuclear expression. Cancer Res. 58, 4740–4754.PubMedGoogle Scholar
  10. 10.
    Wilentz, R. E., Iacobuzio-Donahue, C. A., Argani, P., et al. (2000) Loss of expression of Dpc4 in pancreatic intraepithelial neoplasia: Evidence that DPC4 inactivation occurs late in neoplastic progression. Cancer Res. 60, 2002–2006.PubMedGoogle Scholar
  11. 11.
    Hruban, R. H., Adsay, N. V., Albores-Saavedra, J., et al. (2001) Pancreatic intraepithelial neoplasia (PanIN): A new nomenclature and classification system for pancreatic duct lesions. Am. J. Surg. Pathol. 25, 579–586.PubMedCrossRefGoogle Scholar
  12. 12.
    Cubilla, A. L. and Fitzgerald, P. J. (1976) Morphological lesions associated with human primary invasive nonendocrine pancreas cancer. Cancer Res. 36, 2690–2698.PubMedGoogle Scholar
  13. 13.
    Sohn, T. A., Yeo, C. J., Cameron, J. L., Iacobuzio-Donahue, C. A., Hruban, R. H., and Lillemoe, K. D. (2001) Intraductal papillary mucinous neoplasms of the pancreas: An increasingly recognized clinicopathologic entity. Ann. Surg. 234, 313–321.PubMedCrossRefGoogle Scholar
  14. 14.
    Seidel, G., Zahurak, M., Iacobuzio-Donahue, C, et al. (2002) Almost all infiltrating colloid carcinomas of the pancreas and periampullary region arise from in situ papillary neoplasms: A study of 39 cases. Am. J. Surg. Pathol. 26, 56–63.PubMedCrossRefGoogle Scholar
  15. 15.
    Azar, C., Van de Stadt, J., Rickaert, F., et al. (1996) Intraductal papillary mucinous tumours of the pancreas. Clinical and therapeutic issues in 32 patients. Gut 39, 457–464.PubMedCrossRefGoogle Scholar
  16. 16.
    Nagai, E., Ueki, T., Chijiiwa, K., Tanaka, M., and Tsuneyoshi, M. (1995) Intraductal papillary mucinous neoplasms of the pancreas associated with so-called “mucinous ductal ectasia.” Histochemical and immunohistochemical analysis of 29 cases. Am. J. Surg. Pathol. 19, 576–589.PubMedCrossRefGoogle Scholar
  17. 17.
    Paal, E., Thompson, L. D., Przygodzki, R. M., Bratthauer, G. L., and Heffess, C. S. (1999) A clinicopathologic and immunohistochemical study of 22 intraductal papillary mucinous neoplasms of the pancreas, with a review of the literature. Mod. Pathol. 12, 518–528.PubMedGoogle Scholar
  18. 18.
    Z’graggen, K., Rivera, J. A., Compton, C. C., et al. (1997) Prevalence of activating K-ras mutations in the evolutionary stages of neoplasia in intraductal papillary mucinous tumors of the pancreas. Ann. Surg. 226, 491–498.CrossRefGoogle Scholar
  19. 19.
    Fujii, H., Inagaki, M., Kasai, S., et al. (1997) Genetic progression and heterogeneity in intraductal papillary-mucinous neoplasms of the pancreas. Am. J. Pathol. 151, 1447–1454.PubMedGoogle Scholar
  20. 20.
    Wilentz, R. E., Albores-Saavedra, J., and Hruban, R. H. (2000) Mucinous cystic neoplasms of the pancreas. Semin. Diagn. Pathol. 17, 31–42.PubMedGoogle Scholar
  21. 21.
    Wilentz, R. E., Albores-Saavedra, J., Zahurak, M., et al. (1999) Pathologic examination accurately predicts prognosis in mucinous cystic neoplasms of the pancreas. Am. J. Surg. Pathol. 23, 1320–1327.PubMedCrossRefGoogle Scholar
  22. 22.
    Moskaluk, C. A., Hruban, R. H., and Kern, S. E. (1997) p16 and K-ras gene mutations in the intraductal precursors of human pancreatic adenocarcinoma. Cancer Res. 57, 2140–2143.PubMedGoogle Scholar
  23. 23.
    Brat, D. J., Lillemoe, K. D., Yeo, C. J., Warfield, P. B., and Hruban, R. H. (1998) Progression of pancreatic intraductal neoplasias to infiltrating adenocarcinoma of the pancreas. Am. J. Surg. Pathol. 22, 163–169.PubMedCrossRefGoogle Scholar
  24. 24.
    Brockie, E., Anand, A., and Albores-Saavedra, J. (1998) Progression of atypical ductal hyperplasia/carcinoma in situ of the pancreas to invasive adenocarcinoma. Ann. Diagn. Pathol. 2, 286–292.PubMedCrossRefGoogle Scholar
  25. 25.
    Longnecker, D. S., Adler, G., Hruban, R. H., et al. (2000) Intraductal papillary-mucinous neoplasms of the pancreas, in (Hamilton S. R. and Aaltonen, L. A. eds.), Pathology and Genetics of Tumours of the Digestive System. Lyon: IARC Press, pp. 237–240.Google Scholar
  26. 26.
    Zamboni, G., Kloppel, G., Hruban, R. H., et al. (2000) Mucinous cystic neoplasms of the pancreas, in (Hamilton, S. R. and Aaltonen, L. A. eds.), Pathology and Genetics of Tumours of the Digestive System. Lyon: IARC Press, pp. 234–236.Google Scholar
  27. 27.
    Moskaluk, C. A. and Kern, S. E. (1997) Microdissection and polymerase chain reaction amplification of genomic DNA from histological tissue sections. Am. J. Pathol. 150, 1547–1552.PubMedGoogle Scholar
  28. 28.
    Bonner, R. F., Emmert-Buck, M., Cole, K., et al. (1997) Laser capture microdissection: Molecular analysis of tissue. Science 278, 1481–1483.PubMedCrossRefGoogle Scholar
  29. 29.
    Maitra, A., Wistuba, I. I., Virmani, A. K., et al. (1999) Enrichment of epithelial cells for molecular studies. Nat. Med. 5, 459–463.PubMedCrossRefGoogle Scholar
  30. 30.
    Wilentz, R. E., Su, G. H., Dai, J. L., et al. (2000) Immunohistochemical labeling for Dpc4 mirrors genetic status in pancreatic: A new marker of DPC4 inactiva-tion. Am. J. Pathol. 156, 37–43.PubMedCrossRefGoogle Scholar
  31. 31.
    Iacobuzio-Donahue, C. A., Klimstra, D., Adsay, N. V., et al. (2000) DPC-4 protein is expressed in virtually all human intraductal papillary mucinous neoplasms of the pancreas: Comparison with conventional ductal carcinomas. Am. J. Pathol. 24, 1544–1548.CrossRefGoogle Scholar
  32. 32.
    Iacobuzio-Donahue, C. A., Wilentz, R. E., Argani, P., et al. (2000) Dpc4 protein in mucinous cystic neoplasms of the pancreas: Frequent loss of expression in invasive carcinomas suggests a role in genetic progression. Am. J. Surg. Pathol. 157, 755–761.Google Scholar
  33. 33.
    Kononen, J., Bubendorf, L., Kallioniemi, A., et al. (1998) Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat. Med. 4, 844–857.PubMedCrossRefGoogle Scholar
  34. 34.
    Mucci, N. R., Akdas, G., Manely, S., and Rubin, M. A. (2000) Neuroendocrine expression in metastatic prostate cancer: Evaluation of high throughput tissue microarrays to detect heterogeneous protein expression. Hum. Pathol. 31, 406–414.PubMedCrossRefGoogle Scholar
  35. 35.
    Kallioniemi, O. P., Wagner, U., Kononen, J., and Sauter, G. (2001) Tissue microarray technology for high-throughput molecular profiling of cancer. Hum. Mol. Genet. 10, 657–662.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Ralph H. Hruban
    • 1
  • Robb E. Wilentz
    • 1
  • Anirban Maitra
    • 1
    • 2
    • 3
  1. 1.Department of PathologyThe Johns Hopkins University School of MedicineBaltimore
  2. 2.The Oncology CenterThe Johns Hopkins University School of MedicineBaltimore
  3. 3.Institute of Genetic MedicineThe Johns Hopkins University School of MedicineBaltimore

Personalised recommendations