Skip to main content

Experimental Rnomics

A Global Approach to Identifying Small Nuclear RNAs and Their Targets in Different Model Organisms

  • Protocol
RNA Interference, Editing, and Modification

Part of the book series: Methods in Molecular Biology ((MIMB,volume 265))

Abstract

Non-messenger RNAs (nmRNAs) play a wide and essential role in cellular functions. Computational identification of novel nmRNAs in genomes of model organisms is severely restricted owing to their lack of an open reading frame. Hence, we describe experimental approaches for their identification by generating cDNA libraries derived from nmRNAs for which we coined the term experimental RNomics. Two different procedures are introduced for cDNA library construction. First, we describe the construction of a general purpose cDNA library from sized RNA fractions. Second, we introduce a more specialized RNomics strategy employing this approach to generate a cDNA library from a specific abundant class of nmRNAs. This is illustrated using as a paradigm the two families of small nucleolar RNAs that guide modification of nucleotides in rRNAs or spliceosomal RNAs small nuclear RNAs (snRNAs) by short antisense elements complementary to the modification site. Following the identification of novel members from the class of small nuclear RNAs by experimental RNomics, we demonstrate how their target sequences in rRNAs or snRNAs can be identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Couzin, J. (2002) Breakthrough of the year: small RNAs make big splash. Science 298, 2296–2297.

    Article  PubMed  CAS  Google Scholar 

  2. Dennis, C. (2002) Small RNAs: the genome’s guiding hand? Nature 420, 732.

    Article  PubMed  CAS  Google Scholar 

  3. Dennis, C. (2002) The brave new world of RNA. Nature 418, 122–124.

    Article  PubMed  CAS  Google Scholar 

  4. Huttenhofer, A., Brosius, J., and Bachellerie, J. P. (2002) RNomics: identification and function of small, non-messenger RNAs. Curr. Opin. Chem. Biol. 6, 835–843.

    Article  PubMed  CAS  Google Scholar 

  5. Storz, G. (2002) An expanding universe of noncoding RNAs. Science 296, 1260–1263.

    Article  PubMed  CAS  Google Scholar 

  6. Gottesman, S. (2002) Stealth regulation: biological circuits with small RNA switches. Genes Dev. 16, 2829–2842.

    Article  PubMed  CAS  Google Scholar 

  7. Tuschl, T. (2002) Expanding small RNA interference. Nat. Biotechnol. 20, 446–448.

    Article  PubMed  CAS  Google Scholar 

  8. Tuschl, T. (2003) Functional genomics: RNA sets the standard. Nature 421, 220, 221.

    Article  PubMed  Google Scholar 

  9. Ambros, V. (2001) microRNAs: tiny regulators with great potential. Cell 107, 823–826.

    Article  PubMed  CAS  Google Scholar 

  10. Bachellerie, J. P., Cavaille, J., and Huttenhofer, A. (2002) The expanding snoRNA world. Biochimie 84, 775–790.

    Article  PubMed  CAS  Google Scholar 

  11. Kiss, T. (2002) Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions. Cell 109, 145–148.

    Article  PubMed  CAS  Google Scholar 

  12. Lau, N. C., Lim, L. P., Weinstein, E. G., and Bartel, D. P. (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858–862.

    Article  PubMed  CAS  Google Scholar 

  13. Lee, R. C. and Ambros, V. (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294, 862–864.

    Article  PubMed  CAS  Google Scholar 

  14. Rhoades, M. W., Reinhart, B. J., Lim, L. P., Burge, C. B., Bartel, B., and Bartel, D. P. (2002) Prediction of plant microRNA targets. Cell 110, 513–520.

    Article  PubMed  CAS  Google Scholar 

  15. Volpe, T. A., Kidner, C., Hall, I. M., Teng, G., Grewal, S. I., and Martienssen, R. A. (2002) Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 1833–1837.

    Article  PubMed  CAS  Google Scholar 

  16. Huttenhofer, A., Kiefmann, M., Meier-Ewert, S., O’Brien, J., Lehrach, H., Bachellerie, J. P., and Brosius, J. (2001) RNomics: an experimental approach that identifies 201 candidates for novel, small, non-messenger RNAs in mouse. EMBP J. 20, 2943–2953.

    Article  CAS  Google Scholar 

  17. Marker, C., Zemann, A., Terhorst, T., Kiefmann, M., Kastenmayer, J. P., Green, P., Bachellerie, J. P., Brosius, J., and Huttenhofer, A. (2002) Experimental RNomics: identification of 140 candidates for small non-messenger RNAs in the plant Arabidopsis thaliana. Curr. Biol. 12, 2002–2013.

    Article  PubMed  CAS  Google Scholar 

  18. Tang, T. H., Bachellerie, J. P., Rozhdestvensky, T., Bortolin, M. L., Huber, H., Drungowski, M., Elge, T., Brosius, J., and Huttenhofer, A. (2002) Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobus fulgidus. Proc. Natl Acad. Sci. USA 99, 7536–7541.

    Article  PubMed  CAS  Google Scholar 

  19. Schmitt, A. O., Herwig, R., Meier-Ewert, S., and Lehrach, H. (1999) High density cDNA grids for hybridization fingerprinting experiments, in PCR Applications: Protocols for Functional Genomics (Innis, M. A., Gelfand, D. H., and Sninsky, J. J., eds.), Academic, San Diego, pp. 457–472.

    Google Scholar 

  20. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning, A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  21. Maier, E., Meier-Ewert, S., Ahmadi, A. R., Curtis, J., and Lehrach, H. (1994) Application of robotic technology to automated sequence fingerprint analysis by oligonucleotide hybridisation. J. Biotechnol. 35, 191–203.

    Article  PubMed  CAS  Google Scholar 

  22. Kiss-Laszlo, Z., Henry, Y., Bachellerie, J. P., Caizergues-Ferrer, M., and Kiss, T. (1996) Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell 85, 1077–1088.

    Article  PubMed  CAS  Google Scholar 

  23. Cavaille, J., Vitali, P., Basyuk, E., Huttenhofer, A., and Bachellerie, J. P. (2001) A novel brain-specific box C/D small nucleolar RNA processed from tandemly repeated introns of a noncoding RNA gene in rats. J. Biol. Chem. 276, 26,374–26,383.

    Article  PubMed  CAS  Google Scholar 

  24. Zuker, M. (1994) Prediction of RNA secondary structure by energy minimization. Methods Mol. Biol. 25, 267–294.

    PubMed  CAS  Google Scholar 

  25. Bachellerie, J. P. and Cavaille, J. (1997) Guiding ribose methylation of rRNA. Trends Biochem. Sci. 22, 257–261.

    Article  PubMed  CAS  Google Scholar 

  26. Kiss-Laszlo, Z., Henry, Y., and Kiss, T. (1998) Sequence and structural elements of methylation guide snoRNAs essential for site-specific ribose methylation of pre-rRNA. EMBO J. 17, 797–807.

    Article  PubMed  CAS  Google Scholar 

  27. Darzacq, X., Jady, B. E., Verheggen, C., Kiss, A. M., Bertrand, E., and Kiss, T. (2002) Cajal body-specific small nuclear RNAs: a novel class of 2′-O-methylation and pseudouridylation guide RNAs. EMBO J. 21, 2746–2756.

    Article  PubMed  CAS  Google Scholar 

  28. Ganot, P., Caizergues-Ferrer, M., and Kiss, T. (1997) The family of box ACA small nucleolar RNAs is defined by an evolutionarily conserved secondary structure and ubiquitous sequence elements essential for RNA accumulation. Genes Dev. 11, 941–956.

    Article  PubMed  CAS  Google Scholar 

  29. Cavaille, J. and Bachellerie, J. P. (1998) SnoRNA-guided ribose methylation of rRNA: structural features of the guide RNA duplex influencing the extent of the reaction. Nucleic Acids Res. 26, 1576–1587.

    Article  PubMed  CAS  Google Scholar 

  30. Maden, B. E. (1990) The numerous modified nucleotides in eukaryotic ribosomal RNA. Prog. Nucleic Acid Res. Mol. Biol. 39, 241–303.

    Article  PubMed  CAS  Google Scholar 

  31. Ofengand, J. and Bakin, A. (1997) Mapping to nucleotide resolution of pseudouridine residues in large subunit ribosomal RNAs from representative eukaryotes, prokaryotes, archaebacteria, mitochondria and chloroplasts. J. Mol. Biol. 266, 246–268.

    Article  PubMed  CAS  Google Scholar 

  32. Massenet, S., Mougin, A., and Branlant, C. (1998) Posttranscriptional modifications in the U snRNAs, in Modification and Editing of RNA: The Alteration of RNA Structure and Function (Grosjean, H. and Benne, R. E., eds.), ASM Press, Washington, DC.

    Google Scholar 

  33. Maden, B. E., Corbett, M. E., Heeney, P. A., Pugh, K., and Ajuh, P. M. (1995) Classical and novel approaches to the detection and localization of the numerous modified nucleotides in eukaryotic ribosomal RNA. Biochimie 77, 22–29.

    Article  PubMed  CAS  Google Scholar 

  34. Ganot, P., Bortolin, M. L., and Kiss, T. (1997) Site-specific pseudouridine formation in preribosomal RNA is guided by small nucleolar RNAs. Cell 89, 799–809.

    Article  PubMed  CAS  Google Scholar 

  35. Ofengand, J. and Rudd, K. (2000) Bacterial, archaea, and organellar RNA pseudouridines and methylated nucleosides and their enzymes, in Ribosome: Structure, Function, Antibiotics, and Cellular Interactions (Garrett, R., Douthwaite, S., Liljas, A., Matheson, A., Moore, P. B., and Noller, H. E., eds.), ASM Press, Washington, DC.

    Google Scholar 

  36. Ofengand, J. and Fournier, M. J. (1998) The pseudouridine residues of rRNA: number, location, biosynthesis and function, in Modification and Editing of RNA: The Alteration of RNA Structure and Function (Grosjean, H. and Benne, R. E., eds.), ASM Press, Washington, DC.

    Google Scholar 

  37. Vidovic, I., Nottrott, S., Hartmuth, K., Luhrmann, R., and Ficner, R. (2000) Crystal structure of the spliceosomal 15.5kD protein bound to a U4 snRNA fragment. Mol. Cell 6, 1331–1342.

    Article  PubMed  CAS  Google Scholar 

  38. Darzacq, X. and Kiss, T. (2000) Processing of intron-encoded box C/D small nucleolar RNAs lacking a 5′, 3′-terminal stem structure. Mol. Cell. Biol. 20, 4522–4531.

    Article  PubMed  CAS  Google Scholar 

  39. Kiss, A. M., Jady, B. E., Darzacq, X., Verheggen, C., Bertrand, E., and Kiss, T. (2002) A Cajal body-specific pseudouridylation guide RNA is composed of two box H/ACA snoRNA-like domains. Nucleic Acids Res. 30, 4643–4649.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Hüttenhofer, A., Cavaillé, J., Bachellerie, JP. (2004). Experimental Rnomics. In: Gott, J.M. (eds) RNA Interference, Editing, and Modification. Methods in Molecular Biology, vol 265. Humana Press. https://doi.org/10.1385/1-59259-775-0:409

Download citation

  • DOI: https://doi.org/10.1385/1-59259-775-0:409

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-242-1

  • Online ISBN: 978-1-59259-775-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics