Advertisement

In Vitro Assays for Kinetoplastid U Insertion-Deletion Editing and Associated Activities

Protocol
  • 1.4k Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 265)

Abstract

This chapter describes biochemical assays that have been used in analyzing RNA editing in kinetoplastid mitochondria and to characterize the general mechanism of editing by the editosome. Studies using these assays have shown that the characteristics of each activity contribute to editing site selection, U addition and removal, and RNA ligation resulting in accurately edited mRNAs.

Key Words

Kinetoplastid RNA editing U insertion and deletion editing editing activities guide RNA 

References

  1. 1.
    Milligan, J. F., Groebe, D. R., Witherell, G. W., and Uhlenbeck, O. C. (1987) Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA template. Nucleic Acids Res. 15, 8783–8798.PubMedCrossRefGoogle Scholar
  2. 2.
    Kable, M. L., Seiwert, S. D., Heidmann, S., and Stuart, K. (1996) RNA editing: a mechanism for gRNA-specified uridylate insertion into precursor mRNA. Science 273, 1189–1195.PubMedCrossRefGoogle Scholar
  3. 3.
    Seiwert, S. D., Heidmann, S., Stuart, K. D., and Stuart, K. (1996) Direct visualization of uridylate deletion in vitro suggests a mechanism for kinetoplastid RNA editing. Cell 84, 831–841.PubMedCrossRefGoogle Scholar
  4. 4.
    Read, L. K., Göringer, H. U., and Stuart, K. (1994) Assembly of mitochondrial ribonucleoprotein complexes involves specific guide RNA (gRNA)-binding proteins and gRNA domains but does not require preedited mRNA. Mol. Cell. Biol. 14, 2629–2639.PubMedGoogle Scholar
  5. 5.
    Decker, C. J. and Sollner-Webb, B. (1990) RNA editing involves indiscriminate U changes throughout precisely defined editing domains. Cell 61, 1001–1011.PubMedCrossRefGoogle Scholar
  6. 6.
    Harris, M., Decker, C., Sollner-Webb, B., and Hajduk, S. (1992) Specific cleavage of pre-edited mRNAs in trypanosome mitochondrial extracts. Mol. Cell. Biol. 12, 2591–2598.PubMedGoogle Scholar
  7. 7.
    Piller, K. J., Decker, C. J., Rusché, L. N., and Sollner-Webb, B. (1995) Trypanosoma brucei mitochondrial guide RNA-mRNA chimera-forming activity cofractionates with an editing-domain-specific endonuclease and RNA ligase and is mimicked by heterologous nuclease and RNA ligase. Mol. Cell. Biol. 15, 2925–2932.PubMedGoogle Scholar
  8. 8.
    Burgess, M. L. K., Heidmann, S., and Stuart, K. D. (1999) Kinetoplastid RNA editing does not require the terminal 3′ hydroxyl of guide RNA but modifications to the guide RNA terminus can inhibit in vitro U insertion. RNA 5, 883–892.PubMedCrossRefGoogle Scholar
  9. 9.
    Corell, R. A., Read, L. K., Riley, G. R., et al. (1996) Complexes from Trypanosoma brucei that exhibit deletion editing and other editing-associated properties. Mol. Cell. Biol. 16, 1410–1418.PubMedGoogle Scholar
  10. 10.
    Igo, R. P. Jr., Palazzo, S. S., Burgess, M. L. K., Panigrahi, A. K., and Stuart, K. (2000) Uridylate addition and RNA ligation contribute to the specificity of kinetoplastid insertion RNA editing. Mol. Cell. Biol. 20, 8447–8457.PubMedCrossRefGoogle Scholar
  11. 11.
    Stuart, K. and Panigrahi, A. K. (2002) RNA editing: complexity and complications. Mol. Microbiol. 45, 591–596.PubMedCrossRefGoogle Scholar
  12. 12.
    Lawson, S., Igo, R. P. Jr., Salavati, R., and Stuart, K. D. (2000) The specificity of nucleotide removal during RNA editing in Trypanosoma brucei. RNA 7, 1–10.Google Scholar
  13. 13.
    Koslowsky, D. J., Bhat, G. J., Read, L. K., and Stuart, K. (1991) Cycles of progressive realignment of gRNA with mRNA in RNA editing. Cell 67, 537–546.PubMedCrossRefGoogle Scholar
  14. 14.
    Salavati, R., Panigrahi, A. K., Morach, B., Palazzo, S. S., Igo, R. P. Jr., and Stuart, K. D. (2002) Endoribonuclease activities of Trypanosoma brucei mitochondria. Mol. Biochem. Parasitol. 120, 23–31.PubMedCrossRefGoogle Scholar
  15. 15.
    Piller, K. J., Rusché, L. N., Cruz-Reyes, J., and Sollner-Webb, B. (1997) Resolution of the RNA editing gRNA-directed endonuclease from two other endonucleases of Trypanosoma brucei mitochondria. RNA 3, 279–290.PubMedGoogle Scholar
  16. 16.
    Adler, B. K. and Hajduk, S. L. (1997) Guide RNA requirement for editing-site-specific endonucleolytic cleavage of preedited mRNA by mitochondrial ribonucleo-protein particles in Trypanosoma brucei. Mol. Cell. Biol. 17, 5377–5385.PubMedGoogle Scholar
  17. 17.
    White, T. C. and Borst, P. (1987) RNA end-labeling and RNA ligase activities can produce a circular rRNA in whole cell extracts from trypanosomes. Nucleic Acids Res. 15, 3275–3290.PubMedCrossRefGoogle Scholar
  18. 18.
    Bakalara, N., Simpson, A. M., and Simpson, L. (1989) The Leishmania kinetoplast-mitochondrion contains terminal uridylyltransferase and RNA ligase activities. J. Biol. Chem. 264, 18,679–18,686.PubMedGoogle Scholar
  19. 19.
    Aphasizhev, R., Sbicego, S., Peris, M., Jang, S. H., Aphasizheva, I., Simpson, A. M., Rivlin, A., and Simpson, L. (2002) Trypanosome mitochondrial 3′ terminal uridylyl transferase (TUTase): the key enzyme in U-insertion/deletion RNA editing. Cell 108, 637–648.PubMedCrossRefGoogle Scholar
  20. 20.
    Panigrahi, A. K., Schnaufer, A., Ernst, N., Wang, B., Carmean, N., Salavati, R., and Stuart, K. (2003) Identification of novel components of Trypanosoma brucei editosomes. RNA 9, 484–492.PubMedCrossRefGoogle Scholar
  21. 21.
    Ernst, N. L., Panicucci, B., Igo, R. P. Jr., Panigrahi, A. K., Salavati, R., Stuart, K. (2003) TbMP57 is a 3′ terminal uridylyl transferase (TUTase) of the Trypanosoma brucei editosome. Mol. Cell. 11(6), 1525–1536.PubMedCrossRefGoogle Scholar
  22. 22.
    Sabatini, R. and Hajduk, S. L. (1995) RNA ligase and its involvement in guide RNA/mRNA chimera formation. Evidence for a cleavage-ligation mechanism of Trypanosoma brucei mRNA editing. J. Biol. Chem. 270, 7233–7240.PubMedCrossRefGoogle Scholar
  23. 23.
    Rusché, L. N., Cruz-Reyes, J., Piller, K. J., and Sollner-Webb, B. (1997) Purification of a functional enzymatic editing complex from Trypanosoma brucei mitochondria. EMBO J. 16, 4069–4081.PubMedCrossRefGoogle Scholar
  24. 24.
    Panigrahi, A. K., Gygi, S., Ernst, N., et al. (2001) Association of two novel proteins, TbMP52 and TbMP48, with the Trypanosoma brucei RNA editing complex. Mol. Cell. Biol. 21, 380–389.PubMedCrossRefGoogle Scholar
  25. 25.
    McManus, M. T., Shimamura, M., Grams, J., and Hajduk, S. L. (2001) Identification of candidate mitochondrial RNA editing ligases from Trypanosoma brucei. RNA 7, 167–175.PubMedCrossRefGoogle Scholar
  26. 26.
    Rusché, L. N., Huang, C. E., Piller, K. J., Hemann, M., Wirtz, E., and Sollner-Webb, B. (2001) The two RNA ligases of the Trypanosoma brucei RNA editing complex: cloning the essential Band IV gene and identifying the Band V gene. Mol. Cell. Biol. 21, 979–989.PubMedCrossRefGoogle Scholar
  27. 27.
    Schnaufer, A., Panigrahi, A. K., Panicucci, B., Igo, R. P. Jr., Salavati, R., and Stuart, K. D. (2001) An RNA ligase essential for RNA editing and survival of the bloodstream form of Trypanosoma brucei. Science 291, 2159–2162.PubMedCrossRefGoogle Scholar
  28. 28.
    Drozdz, M., Palazzo, S. S., Salavati, R., O’Rear, J., Clayton, C., and Stuart, K. (2002) TbMP81 is required for RNA editing in Trypanosoma brucei. EMBO J. 21, 1791–1799.CrossRefGoogle Scholar
  29. 29.
    Cruz-Reyes, J., Zhelonkina, A. G., Huang, C. E., and Sollner-Webb, B. (2002) Distinct functions of two RNA ligases in active Trypanosoma brucei RNA editing complexes. Mol. Cell. Biol. 22, 4652–4660.PubMedCrossRefGoogle Scholar
  30. 30.
    Stuart, K. and Panigrahi, A. K. (2002) RNA editing: complexity and complications. Mol. Microbiol. 45, 591–596.PubMedCrossRefGoogle Scholar
  31. 31.
    Missel, A., Souza, A. E., Norskau, G., and Göringer, H. U. (1997) Disruption of a gene encoding a novel mitochondrial DEAD-box protein in Trypanosoma brucei affects edited mRNAs. Mol. Cell. Biol. 17, 4895–4903.PubMedGoogle Scholar
  32. 32.
    Cruz-Reyes, J., Rusche, L. N., Piller, K. J., and Sollner-Webb, B. (1998) T. brucei RNA editing: adenosine nucleotides inversely affect U-deletion and U-insertion reactions at mRNA cleavage. Mol. Cell 1, 401–409.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  1. 1.Seattle Biomedical Research InstituteUniversity of WashingtonSeattle
  2. 2.Department of PathobiologyUniversity of WashingtonSeattle
  3. 3.Department of BiostatisticsUniversity of WashingtonSeattle

Personalised recommendations