Isolation of an mRNA-Binding Protein Involved in C-to-U Editing

Part of the Methods in Molecular Biology book series (MIMB, volume 265)


This chapter describes the technique of RNA affinity chromatography, which is a powerful approach for isolating RNA-binding proteins. This method takes advantage of the fact that sequence-specific RNA-binding proteins often bind their targets with high affinity. Here we outline a protocol for purifying Apobec-1 complementation factor (ACF), the RNA-binding subunit of the apolipoprotein-B (apo-B) mRNA-editing enzyme. ACF was purified using synthetic wild-type and mutant apo-B RNAs, which were coupled to cyanogen bromide (CNBr)-activated Sepharose. The methods are plasmid construction for in vitro transcription, affinity chromatography column preparation, protein purification by RNA affinity chromatography, and analysis of the purified protein.

Key Words

RNA editing RNA-binding protein affinity chromatography Apobec-1 complementation factor 


  1. 1.
    Sela-Brown, A., Silver, J., Brewer, G., and Naveh-Many, T. (2000) Identification of AUF1 as a parathyroid hormone mRNA 3′-untranslated region-binding protein that determines parathyroid hormone mRNA stability. J. Biol. Chem. 275(10), 7424–7429.PubMedCrossRefGoogle Scholar
  2. 2.
    Neupert, B., Thompson, N. A., Meyer, C., and Kuhn, L. C. (1990) A high yield affinity purification method for specific RNA-binding proteins: isolation of the iron regulatory factor from human placenta. Nucleic Acids Res. 18(1), 51–55.PubMedCrossRefGoogle Scholar
  3. 3.
    Rouault, T. A., Hentze, M. W., Haile, D. J., Harford, J. B., and Klausner, R. D. (1989) The iron-responsive element binding protein: a method for the affinity purification of a regulatory RNA-binding protein. Proc. Natl. Acad. Sci. USA 86(15), 5768–5772.PubMedCrossRefGoogle Scholar
  4. 4.
    Mehta, A. and Driscoll, D. (1998) A sequence-specific RNA-binding protein complements apobec-1 to edit apolipoprotein B mRNA. Mol. Cell. Biol. 18(8), 4426–4432.PubMedGoogle Scholar
  5. 5.
    Copeland, P. R. and Driscoll, D. M. (1999) Purification, redox sensitivity, and RNA binding properties of SECIS-binding protein 2, a protein involved in selenoprotein biosynthesis. J. Biol. Chem. 274(36), 25,447–25,454.PubMedCrossRefGoogle Scholar
  6. 6.
    Copeland, P. R., Fletcher, J. E., Carlson, B. A., Hatfield, D. L., and Driscoll, D. M. (2000) A novel RNA binding protein, SBP2, is required for the translation of mammalian selenoprotein mRNAs. EMBO J. 19(2), 306–314.PubMedCrossRefGoogle Scholar
  7. 7.
    Mehta, A., Kinter, M. T., Sherman, N. E., and Driscoll, D. M. (2000) Molecular cloning of apobec-1 complementation factor, a novel RNA-binding protein involved in the editing of apolipoprotein B mRNA. Mol. Cell. Biol. 20(5), 1846–1854.PubMedCrossRefGoogle Scholar
  8. 8.
    Kaminski, A., Hunt, S. L., Patton, J. G., and Jackson, R. J. (1995) Direct evidence that polypyrimidine tract binding protein (PTB) is essential for internal initiation of translation of encephalomyocarditis virus RNA. RNA 1(9), 924–938.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  1. 1.Lerner Research Institute, Department of Cell BiologyThe Cleveland Clinic FoundationCleveland

Personalised recommendations