Geminivirus Vectors for Transient Gene Silencing in Plants

Part of the Methods in Molecular Biology book series (MIMB, volume 265)


Both RNA and DNA viruses have been engineered to serve as vectors for transient silencing in intact plants. Host gene sequences carried by the virus are seen by the plant as “foreign,” and homologous gene-silencing machinery acts on both the viral vector RNA and the endogenous host gene mRNA. DNA viruses, such as geminiviruses, are advantageous for silencing because only their mRNAs are silenced and their DNA genomes continue to replicate and move. The conserved genome organization of geminiviruses and the fact that they can be cloned into Escherichia coli plasmids, propagated, and then inoculated into plants for infection simplifies the procedure for silencing specific chromosomal genes in intact plants. This chapter describes the development of a silencing vector from cabbage leaf curl virus for use in Arabidopsis and procedures for silencing two genes simultaneously.

Key Words

Geminivirus transient gene silencing Arabidopsis functional genomics DNA virus-induced gene silencing cabbage leaf curl virus 


  1. 1.
    Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815.CrossRefGoogle Scholar
  2. 2.
    Gutierrez, C. (2000) DNA replication and cell cycle in plants: learning from geminiviruses. EMBO J. 19, 792–799.PubMedCrossRefGoogle Scholar
  3. 3.
    Hanley-Bowdoin, L., Settlage, S. B., Orozco, B. M., Nagar, S., and Robertson, D. (1999) Geminiviruses: models for plant DNA replication, transcription and cell cycle regulation. Crit. Rev. Plant Sci. 18, 71–106.CrossRefGoogle Scholar
  4. 4.
    Hill, J. E., Strandberg, J. O., Hiebert, E., and Lazarowitz, S. G. (1998) Asymmetric infectivity of pseudorecombinants of cabbage leaf curl virus and squash leaf curl virus: implications for bipartite geminivirus evolution and movement. Virology 250, 283–292.PubMedCrossRefGoogle Scholar
  5. 5.
    Ratcliff, F., Martin-Hernandez, A. M., and Baulcombe, D. C. (2001) Technical advance: tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J. 25, 237–245.PubMedCrossRefGoogle Scholar
  6. 6.
    Gossele, V., Fache, I., Meulewaeter, F., Cornelissen, M., and Metzlaff, M. (2002) SVISS—a novel transient gene silencing system for gene function discovery and validation in tobacco plants. Plant J. 32, 859–866.PubMedCrossRefGoogle Scholar
  7. 7.
    Angell, S. M. and Baulcombe, D. C. (1997) Consistent gene silencing in transgenic plants expressing a replicating potato virus X RNA. EMBO. J. 16, 3675–3684.PubMedCrossRefGoogle Scholar
  8. 8.
    Kumagai, M. H., Donson, J., della-Cioppa, G., Harvey, D., Hanley, K., and Grill, L. K. (1995) Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proc. Natl. Acad. Sci. USA 92, 1679–1683.PubMedCrossRefGoogle Scholar
  9. 9.
    Dinesh-Kumar, S. P., Anandalakshmi, R., Marathe, R., Schiff, M., and Liu, Y. (2003) Virus-induced gene silencing, in Plant Functional Genomics Methods and Protocols, vol. 236 (Grotewold, E., ed.), Humana, Totowa, NJ, p. 287–293.CrossRefGoogle Scholar
  10. 10.
    Atkinson, R. G., Bieleski, G. R., Gleave, A. P., et al. (1998) Post-transcriptional silencing of chalcone synthase in petunia using ageminivirus-based episomal vector. Plant J. 15, 593–604.CrossRefGoogle Scholar
  11. 11.
    Turnage, M. A., Muangsan, N., Peele, C. G., and Robertson, D. (2002) Geminivirus-based vectors for gene silencing in Arabidopsis. Plant J. 30, 107–114.PubMedCrossRefGoogle Scholar
  12. 12.
    Weigel, D. and Glazebrook, J. (2002) Arabidopsis: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  13. 13.
    Boyes, D., Zayed, A., Ascenzi, R., McCaskill, A., Hoffman, N., Davis, K., and Gorlach, J. (2001) Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell 13, 1499–1510.PubMedCrossRefGoogle Scholar
  14. 14.
    Koncz, C., Mayerhofer, R., Koncz-Kalman, Z., Nawrath, C., Reiss, B., Redei, G. P., and Schell, J. (1990) Isolation of a gene encoding a novel chloroplast protein by T-DNA tagging in Arabidopsis thaliana. EMBO J. 9, 1337–1346.PubMedGoogle Scholar
  15. 15.
    Dellaporta, S. L., Wood, J., and Hicks, J. B. (1993) A plant DNA minipreparation: version II. Plant Mol. Biol. Rep. 1, 19–21.CrossRefGoogle Scholar
  16. 16.
    Jose, J. and Usha, R. (2003) Bhendi yellow vein mosaic disease in India is caused by association of a DNA Beta satellite with a begomovirus. Virology 305, 310–317.PubMedCrossRefGoogle Scholar
  17. 17.
    Sambrook, J. and Russell, D. W. (2001) Molecular Cloning: A Laboratory Manual, 3rd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  18. 18.
    Kjemtrup, S., Boyes, D. C., Christensen, C., McCaskill, A. J., Hylton, M., and Davis, K. (2003) Growth stage-based phenotypic profiling of plants, in Plant Functional Genomics Methods and Protocols, vol. 236 (Grotewold, E., ed.), Humana, Totowa, NJ, pp. 427–441.CrossRefGoogle Scholar
  19. 19.
    Kjemtrup, S., Sampson, K., Peele, C., Nguyen, L. V., Conkling, M. A., Thompson, W. F., and Robertson, D. (1998) Gene silencing from plant DNA carried by a Geminivirus. Plant J. 14, 91–100.PubMedCrossRefGoogle Scholar
  20. 20.
    Peele, C., Jordan, C. V., Muangsan, N., Turnage, M., Egelkrout, E., Eagle, P., Hanley-Bowdoin, L., and Robertson, D. (2001) Silencing of a meristematic gene using geminivirus-derived vectors. Plant J. 27, 357–366.PubMedCrossRefGoogle Scholar
  21. 21.
    Elmer, S. and Rogers, S. G. (1990) Selection for wild type size derivatives of tomato golden mosaic virus during systemic infection. Nucleic Acids Res. 18, 2001–2006.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  1. 1.Department of BiologyKhon Khaen UniversityKhon KhaenThailand
  2. 2.Department of BotanyNorth Carolina State UniversityRaleigh

Personalised recommendations