Induction and Biochemical Purification of RNA-Induced Silencing Complex From Drosophila S2 Cells

Part of the Methods in Molecular Biology book series (MIMB, volume 265)


The discovery of RNA interference (RNAi) has greatly simplified the process of suppressing genes in many experimental systems, including Caenorhabditis elegans, Drosophila, and mammalian cells. A sequence-specific nuclease complex, called the RNA-induced silencing complex (RISC), can be purified from cells undergoing RNAi. RISC shows RNase activity when exposed to RNAs homologous to the input double-stranded RNA (dsRNAs) but lacks activity in the presence of nontargeted RNAs. We describe the induction of RNAi by dsRNA in cultured Drosophila Schneider-2 (S2) cells and detail procedures for RISC purification from these cells. This purification approach has allowed us to identify several RISC components, including siRNAs, Argonaute 2 (Ago-2), Drosophila Fragile X related protein (dFXR), Vasa intronic gene (VIG), and the micrococcal nuclease family member Tudor-SN (Drosophila CG7008). RNAi is carried out by an endogenous pathway important for normal development in many organisms. In fact, organisms express hundreds of different microRNAs (miRNAs), small hairpin RNAs that function through the RNAi pathway to suppress expression of endogenous genes. The function of miRNAs is poorly understood, and most of their targets are unknown. Purified RISC complexes contain short interfering RNAs and endogenously expressed miRNAs and will be useful for studying many aspects of the RNAi machinery.

Key Words

RNA interference Dicer Argonaute-2 Ago-2 Tudor-SN let-7 Drosophila 


  1. 1.
    Hannon, G. J. (2002) RNA interference. Nature 418, 244–251.PubMedCrossRefGoogle Scholar
  2. 2.
    Ambros, V. (2001) microRNAs: tiny regulators with great potential. Cell 107, 823–826.PubMedCrossRefGoogle Scholar
  3. 3.
    Hammond, S. M., Bernstein, E., Beach, D., and Hannon, G. J. (2000) An RNAdirected nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293–296.PubMedCrossRefGoogle Scholar
  4. 4.
    Tuschl, T., Zamore, P. D., Lehmann, R., Bartel, D. P., and Sharp, P. A. (1999) Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev. 13, 3191–3197.PubMedCrossRefGoogle Scholar
  5. 5.
    Ketting, R. F., Fischer, S. E., Bernstein, E., Sijen, T., Hannon, G. J., and Plasterk, R. H. (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev. 15, 2654–2659.PubMedCrossRefGoogle Scholar
  6. 6.
    Hutvagner, G. and Zamore, P. D. (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science 297, 2056–2060.PubMedCrossRefGoogle Scholar
  7. 7.
    Martinez, J., Patkaniowska, A., Urlaub, H., Luhrmann, R., and Tuschl, T. (2002) Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110, 563–574.PubMedCrossRefGoogle Scholar
  8. 8.
    Yang, D., Buchholz, F., Huang, Z., Goga, A., Chen, C. Y., Brodsky, F. M., and Bishop, J. M. (2002) Short RNA duplexes produced by hydrolysis with Escherichia coli RNase III mediate effective RNA interference in mammalian cells. Proc. Natl. Acad. Sci. USA 99, 9942–9947.PubMedCrossRefGoogle Scholar
  9. 9.
    Billy, E., Brondani, V., Zhang, H., Muller, U., and Filipowicz, W. (2001) Specific interference with gene expression induced by long, double-stranded RNA in mouse embryonal teratocarcinoma cell lines. Proc. Natl. Acad. Sci. USA 98, 14,428–14,433.PubMedCrossRefGoogle Scholar
  10. 10.
    Yang, S., Tutton, S., Pierce, E., and Yoon, K. (2001) Specific double-stranded RNA interference in undifferentiated mouse embryonic stem cells. Mol. Cell. Biol. 21, 7807–7816.PubMedCrossRefGoogle Scholar
  11. 11.
    Tang, G., Reinhart, B. J., Bartel, D. P., and Zamore, P. D. (2003) A biochemical framework for RNA silencing in plants. Genes Dev. 17, 49–63.PubMedCrossRefGoogle Scholar
  12. 12.
    Bernstein, E., Caudy, A. A., Hammond, S. M., and Hannon, G. J. (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366.PubMedCrossRefGoogle Scholar
  13. 13.
    Zamore, P. D., Tuschl, T., Sharp, P. A., Bartel, D. P. (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25–33.PubMedCrossRefGoogle Scholar
  14. 14.
    Hammond, S. M., Boettcher, S., Caudy, A. A., Kobayashi, R., and Hannon, G. J. (2001) Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293, 1146–1150.PubMedCrossRefGoogle Scholar
  15. 15.
    Caudy, A. A., Ketting, R. F., Hammond, S. M., et al. (2003) A staphylococcal nuclease homolog as a component of RNAi effector complexes in Drosophila, C. elegans and mammals. Nature. 425(6956), 411–414.PubMedCrossRefGoogle Scholar
  16. 16.
    Caudy, A. A., Myers, M., Hannon, G. J., and Hammond, S. M. (2002) Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev. 16, 2491–2496.PubMedCrossRefGoogle Scholar
  17. 17.
    Lim, L. P., Lau, N. C., Weinstein, E. G., Abdelhakim, A., Yekta, S., Rhoades, M. W., Burge, C. B., and Bartel, D. P. (2003) The microRNAs of Caenorhabditis elegans. Genes Dev. 17, 991–1008.PubMedCrossRefGoogle Scholar
  18. 18.
    Brennecke, J., Hipfner, D. R., Stark, A., Russell, R. B., and Cohen, S. M. (2003) Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113, 25–36.PubMedCrossRefGoogle Scholar
  19. 19.
    Abrahante, J. E., Daul, A. L., Li, M., et al. (2003) The Caenorhabditis elegans hunchback-like gene lin-57/hbl-1 controls developmental time and is regulated by microRNAs. Dev. Cell 4, 625–637.PubMedCrossRefGoogle Scholar
  20. 20.
    Llave, C., Xie, Z., Kasschau, K. D., and Carrington, J. C. (2002) Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297, 2053–2056.PubMedCrossRefGoogle Scholar
  21. 21.
    Olsen, P. H. and Ambros, V. (1999) The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol. 216, 671–680.PubMedCrossRefGoogle Scholar
  22. 22.
    Grishok, A., Pasquinelli, A. E., Conte, D., Li, N., Parrish, S., Ha, I., Baillie, D. L., Fire, A., Ruvkun, G., and Mello, C. C. (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106, 23–34.PubMedCrossRefGoogle Scholar
  23. 23.
    Reinhart, B. J., Slack, F. J., Basson, M., Pasquinelli, A. E., Bettinger, J. C., Rougvie, A. E., Horvitz, H. R., and Ruvkun, G. (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901–906.PubMedCrossRefGoogle Scholar
  24. 24.
    Seggerson, K., Tang, L., and Moss, E. G. (2002) Two genetic circuits repress the Caenorhabditis elegans heterochronic gene lin-28 after translation initiation. Dev. Biol. 243, 215–225.PubMedCrossRefGoogle Scholar
  25. 25.
    Slack, F. J., Basson, M., Liu, Z., Ambros, V., Horvitz, H. R., and Ruvkun, G. (2000) The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol. Cell 5, 659–669.PubMedCrossRefGoogle Scholar
  26. 26.
    Elbashir, S. M., Lendeckel, W., and Tuschl, T. (2001) RNA interference is mediated by 21-and 22-nucleotide RNAs. Genes Dev. 15, 188–200.PubMedCrossRefGoogle Scholar
  27. 27.
    Spankuch-Schmitt, B., Bereiter-Hahn, J., Kaufmann, M., and Strebhardt, K. (2002) Effect of RNA silencing of polo-like kinase-1 (PLK1) on apoptosis and spindle formation in human cancer cells. J. Natl. Cancer Inst. 94, 1863–1877.PubMedGoogle Scholar
  28. 28.
    Capodici, J., Kariko, K., and Weissman, D. (2002) Inhibition of HIV-1 infection by small interfering RNA-mediated RNA interference. J. Immunol. 169, 5196–5201.PubMedGoogle Scholar
  29. 29.
    Wilson, J. A., Jayasena, S., Khvorova, A., Sabatinos, S., Rodrigue-Gervais, I. G., Arya, S., Sarangi, F., Harris-Brandts, M., Beaulieu, S., and Richardson, C. D. (2003) RNA interference blocks gene expression and RNA synthesis from hepatitis C replicons propagated in human liver cells. Proc. Natl. Acad. Sci. USA 100, 2783–2788.PubMedCrossRefGoogle Scholar
  30. 30.
    McCaffrey, A. P., Nakai, H., Pandey, K., Huang, Z., Salazar, F. H., Xu, H., Wieland, S. F., Marion, P. L., and Kay, M. A. (2003) Inhibition of hepatitis B virus in mice by RNA interference. Nat. Biotechnol. 21, 639–644.PubMedCrossRefGoogle Scholar
  31. 31.
    Clemens, J. C., Worby, C. A., Simonson-Leff, N., Muda, M., Maehama, T., Hemmings, B. A., and Dixon, J. E. (2000) Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc. Natl. Acad. Sci. USA 97, 6499–6503.PubMedCrossRefGoogle Scholar
  32. 32.
    Worby, C. A., Simonson-Leff, N., and Dixon, J. E. (2001) RNA interference of gene expression (RNAi) in cultured Drosophila cells. SciSTKE 95, PL1.Google Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  1. 1.Cold Spring Harbor LaboratoryWatson School of Biological SciencesCold Spring Harbor

Personalised recommendations