Skip to main content

Three Decades of Fungal Transformation

Novel Technologies

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 267))

Abstract

Fungi are lower eukaryotes that play important roles in many human activities, including biotechnological processes, phytopathology, and biomedical research. In addition, they are excellent models for molecular and genetic studies. An important key in the advancement of genetics and molecular biology of a given organism is the development of genetic transformation systems. This technology makes possible the analysis and manipulation of the genome of the organism of interest. Thirty years from the first report of transformation of a fungus, transformation of many other fungi has been achieved. However, the development of gene tagging systems generally applicable to a wide range of filamentous fungi has remained elusive. A widely used gene tagging strategy for filamentous fungi is restriction enzyme mediated integration (REMI). In recent years numerous reports have been published describing the effective application of REMI. However, REMI shows certain disadvantages for some fungi. Recently a very promising alternative strategy has been reported based on the use of the soil bacterium Agrobacterium tumefaciens. Using this system a well-defined DNA segment (T-DNA) is transferred, which integrates by illegitimate recombination and is 100–1000 times more efficient than conventional methods. The T-DNA can be used as an efficient tool to generate recombinant strains where DNA is integrated as a single copy, allowing the generation of collections of gene-tagged mutants of the fungus of interest.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Mishra, N. C. and Tatum, E. L. (1973) Non-Mendelian inheritance of DNA-mediated inositol independence in Neurospora. Proc. Natl. Acad. Sci. USA. 70, 3875–3879.

    Article  PubMed  CAS  Google Scholar 

  2. Brown, J. S. and Holden, D. W. (1998) Insertional mutagenesis of pathogenic fungi. Curr. Opin. Microbiol. 1, 390–394.

    Article  PubMed  CAS  Google Scholar 

  3. Finchman, J. R. S. (1989) Transformation of fungi. Microbiol. Rev. 53, 148–170.

    Google Scholar 

  4. Balance, D. J. (1991) Transformation systems for filamentous fungi and an overview of fungal gene structure. In Molecular Industrial Mycology Systems and Applications for Filamentous Fungi (Leong, S. A., Berka, R. M., eds.) Marcel Dekker, New York, p. 1.

    Google Scholar 

  5. Kinghorn, J. R. and Unkles, S. E. (1999) Molecular genetics and expression of foreing proteins in the genus Aspergillus (Smith, J. E., ed.) Plenum Press, London, p. 65.

    Google Scholar 

  6. Hogan, L. H. and Klein, B. S. (1997) Transforming DNA integrates at multiple sites in the dimorphic fungal pathogen Blastomyces dermatitidis. Gene 186, 219–226.

    Article  PubMed  CAS  Google Scholar 

  7. Turner, G. (1990) Strategies for cloning genes from filamentous fungi. In Applied Molecular Genetics of Fungi (Peberdy, J. F., Caten, C. E., Ogden, J. E., Bennett, J. W., eds.) Cambridge University Press, Cambridge, p. 29.

    Google Scholar 

  8. Wang, J., Holden, W. and Leong, S. A. (1988) Gene transfer system for the phytopathogenic fungus Ustilago maydis. Proc. Natl. Acad. Sci. USA. 85, 865–869.

    Article  PubMed  CAS  Google Scholar 

  9. Worsham, P. L. and Goldman, W. E. (1990) Development of a genetic transformation system for Histoplasma capsulatum, complementation of uracil auxotrophy. Mol. Gen. Genet. 221, 358–362.

    Article  PubMed  CAS  Google Scholar 

  10. Varma, A., Edman, J. C., and Kwong-chong, K. J. (1992) Molecular and genetic analysis of URA transformants of Cryptococcus neoformans. Infect. Immun. 60, 1101–1108.

    PubMed  CAS  Google Scholar 

  11. Hensel, M. and Holden, D. W. (1996) Molecular genetic approaches for the study of virulence in both pathogenic bacteria and fungi. Microbiology 142, 1049–1058.

    Article  PubMed  CAS  Google Scholar 

  12. Kemken, F. and Kuck, U. (1996) Restless, an active Ac-like transposon from the fungus Tolypocladium inflatum, structure, expression, and alternative RNA splicing. Mol. Cell Biol. 16, 6563–6572.

    Google Scholar 

  13. Langing, T., Capy, P., and Daboussi, M. J. (1995) The transposable element impala, a fungal member of the Tc1-mariner superfamily. Mol. Gen. Genet. 246, 19–28.

    Article  Google Scholar 

  14. Daboussi, M. J., Djaballi, A., and Gerlinger, C. (1989) Transformation of seven species of filamentous fungi using nitrate reductase gene of Aspergillus nidulans. Curr. Genetics 15, 453–456.

    Article  CAS  Google Scholar 

  15. Kinsey, J. A. and Helber, J. (1989) Isolation of transposable element from Neurospora crassa. Proc. Natl. Acad. Sci. USA 86, 1929–1933.

    Article  PubMed  CAS  Google Scholar 

  16. Devine, S. E. and Boeke, J. D. (1996) Integration of the yeast retrotransposon Ty1 is targeted to regions upstream of genes transcribed by RNA polymerase III. Genes Dev. 10, 620–633.

    Article  PubMed  CAS  Google Scholar 

  17. Riggle, P. J. and Kumamoto, C. A. (1998) Genetic analysis in fungi using restrictionenzyme-mediated integration. Curr. Opin. Microbiol. 1, 395–399.

    Article  PubMed  CAS  Google Scholar 

  18. Lu, S., Lyngholm, L., Yang, G., Bronson, C., Yoder, O. C., and Turgen, B. G. (1994) Tagged mutations at the Tox1 locus of Cochliobolus heterostrophus by restriction enzyme-mediated integration. Proc. Natl. Acad. Sci. USA 91, 12649–12653.

    Article  PubMed  CAS  Google Scholar 

  19. Granado, J. D., Kertesz-Chaloupkova, K., Aebi, M., and Kues, U. (1997) Restriction enzyme-mediated DNA integration in Coprinus cinereus. Mol. Gen. Genet. 256, 28–36.

    Article  PubMed  CAS  Google Scholar 

  20. Itoh, Y. and Scott, B. (1997) Effect of de-phosphorylation of linearised pAN7-1 and addition of restriction enzyme on plasmid integration in Penicillium paxilli. Curr. Genet. 32, 147–151.

    Article  PubMed  CAS  Google Scholar 

  21. Akamatsu, H., Itoh, Y., Kodama, M. and Kohmoto, K. (1997). AAL-toxin deficient mutants of Alternaria alternata tomato pathotype by restriction enzyme mediated integration. Phytopathology 87, 967–972.

    Article  PubMed  CAS  Google Scholar 

  22. Yun, S. H., Turgeon, B. G., and Yoder, O. C. (1998) REMI-induced mutants of Mycosphaerella zeae-maydis lacking the PM-toxin are deficient in pathogenesis to corn. Physiol. Mol. Plant Pathol. 52, 53–66.

    Article  CAS  Google Scholar 

  23. Sweigard, J. A., Carrol, A. M., Farrall, L., Chumley, F. G., and Valent, B. (1998) Magnaporte grisea pathogenicity genes obtained through insertional mutagenesis. Mol. Plant-Microbe Interact. 11, 404–412.

    Article  PubMed  CAS  Google Scholar 

  24. Balhadere. P. V., Foster, A. J., and Talbot, N. J. (1999) Identification of pathogenicity mutants of the rice blast fungus Magnaporte grisea by insertional mutagenesis. Mol. Plant-Microbe Interact. 12, 129–142.

    Article  CAS  Google Scholar 

  25. Redman, R. S., Ranson, J. C., and Rodriguez, R. J. (1999) Conversion of the pathogenic fungus Colletotrichum magna to a nonpathogenic endophytic mutualist by gene disruption. Mol. Plant-Microbe Interact. 12, 969–975.

    Article  CAS  Google Scholar 

  26. Bölker, M., Böhnert, H. U., Braun, K. H., Görl, J. and Kahmann, R. (1995) Tagging pathogenicity genes in Ustilago maydis by restriction enzyme-mediated integration (REMI). Mol. Gen. Genet. 248, 247–552.

    Article  Google Scholar 

  27. Linnemannstöns, P., Vob, T., Hedden., P., Gaskin, P., and Tudzynski, B. (1999) Deletions in the gibberellin biosynthesis gene cluster of Gibberella fujikuroi by restriction enzyme mediated integration and conventional transformation-mediated mutagenesis. Appl. Env. Microbiol. 65, 2558–2564.

    Google Scholar 

  28. Epstein, L., Lusnak, K., and Kaur, S. (1988) Transformation-mediated developmental mutants of Glomerella graminicola (Colletotrichum graminicola). Fun. Gen. Biol. 23, 189–203.

    Article  Google Scholar 

  29. Thon, M. R., Nuckles, E. M., and Vaillancourt, L. J. (2000) Restriction enzyme mediated integration used to produce pathogenicity mutants of Colletotrichum graminicola. Mol. Plant-Microbe Interact. 13, 1356–1365.

    Article  PubMed  CAS  Google Scholar 

  30. Namiki, F., Matsunaga, M., Okuda, M., Inoue, I., Nishi, K., Fujita, Y., et al. (2001) Mutation of an arginine biosynthesis gene causing reduced pathogenicity in Fusarium oxysporum f. sp. Melonis. Mol. Plant-Microbe Interact. 14, 580–584.

    Article  PubMed  CAS  Google Scholar 

  31. Kahmann, R. and Basse, C. (1999) REMI (restriction enzyme mediated integration) and its impact on the isolation of pathogenecity genes in fungi attacking plants. Eur. J. Plant Pathol.. 105, 221–229.

    Article  CAS  Google Scholar 

  32. Sweigard, J. A., Carrol, A. M., Farral, L., Chumley, F. G., and Valent, V. (1998) Magnaporte grisea pathogenicity genes obtained through insertional mutagenesis. Mol. Plant-Microbe Interact. 11, 404–412.

    Article  PubMed  CAS  Google Scholar 

  33. Feldman, K. A. (1991) T-DNA insertion mutagenesis in Arabidopsis, mutational spectrum. Plant J. 1, 71–82.

    Article  Google Scholar 

  34. Koncz, C., Németh, K., Rédei, G. P., and Schell, J. (1992) T-DNA insertional mutagenesis in Arabidopsis. Plant Mol. Biol. 20, 963–976.

    Article  PubMed  CAS  Google Scholar 

  35. Krysan, P. J., Young, J. C., and Sussman, M. R. (1999) T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 11, 2283–2290.

    Article  PubMed  CAS  Google Scholar 

  36. Bundock, P., den Dulk-Ras, A, Beijersbergen, A., and Hooykaas, P. J. (1995) Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J. 13, 206–14.

    Google Scholar 

  37. Bundock, P. and Hooykaas, P. J (1996) Integration of Agrobacterium tumefaciens T-DNA in the Saccharomyces cerevisiae genome by illegitimate recombination. Proc. Natl. Acad. Sci. USA 26, 15272–15275.

    Article  Google Scholar 

  38. Risseeuw, E., Franke-van Dijk, M. E. and Hooykaas, P. J. (1996) Integration of an insertiontype transferred DNA vector from Agrobacterium tumefaciens into the Saccharomyces cerevisiae genome by gap repair. Mol. Cell Biol. 10, 5924–5932.

    Google Scholar 

  39. Sawasaki, Y., Inomata, K., and Yoshida, K. (1996) Trans-kingdom conjugation between Agrobacterium tumefaciens and Saccharomyces cerevisiae, a bacterium and a yeast. Plant Cell Physiol. 1, 103–106.

    Google Scholar 

  40. Piers, K. L., Heath, J. D., Liang, X., Stephens, K. M., and Nester, E. W. (1996) Agrobacterium tumefaciens-mediated transformation of yeast. Proc. Natl. Acad. Sci. USA 4, 1613–1618.

    Article  Google Scholar 

  41. de Groot, M. J., Bundock, P., Hooykaas, P. J., and Beijersbergen, A. G. (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat. Biotechnol. 9, 839–842.

    Article  Google Scholar 

  42. Dunn-Coleman, N. and Wang, H. (1998) Agrobacterium T-DNA, a silver bullet for filamentous fungi? Nat. Biotechnol. 9, 817–818.

    Article  Google Scholar 

  43. Bundock, P., Mroczek, K., Winkler, A. A., Steensma, H. Y., and Hooykaas, P. J. (1999) T-DNA from Agrobacterium tumefaciens as an efficient tool for gene targeting in Kluyveromyces lactis. Mol. Gen. Genet. 1, 115–121.

    Google Scholar 

  44. Bundock, P., Mroczek, K., Winkler, A. A, Steensma, H. Y., and Hooykaas, P. J. (1999) T-DNA from Agrobacterium tumefaciens as an efficient tool for gene targeting in Kluyveromyces lactis. Mol. Gen. Genet. 1, 115–121.

    Google Scholar 

  45. Gouka, R. J., Gerk, C., Hooykaas, P. J., Bundock, P., Musters, W., Verrips, C. T., and de Groot, M. J. (1999) Transformation of Aspergillus awamori by Agrobacterium tumefaciens-mediated homologous recombination. Nat. Biotechnol. 6, 598–601.

    Article  Google Scholar 

  46. Chen, X., Stone, M., Schlagnhaufer, C., and Romanie, P. (2000). A fruiting body tissue method for efficient Agrobacterium-mediated transformation of Agaricus bisporus. Appl. Env. Microbiol. 66, 4510–4513.

    Article  CAS  Google Scholar 

  47. Abuodeh, R. O., Orbach, M. J., Mandel, M. A., Das, A., and Galgiani, J. N. (2000) Genetic transformation of Coccidioides immitis facilitated by Agrobacterium tumefaciens. J. Infect. Dis. 181, 2106–2110.

    Article  PubMed  CAS  Google Scholar 

  48. Mikosch, T. S., Lavrijssen, B., Sonnenberg, A. S., and van Griensven, L. J. (2001) Transformation of the cultivated mushroom Agaricus bisporus (Lange) using T-DNA from Agrobacterium tumefaciens. Curr. Genet. 1, 35–39.

    Article  Google Scholar 

  49. Zwiers, L. H., and De Waard M. A.(2001) Efficient Agrobacterium tumefaciens-mediated gene disruption in the phytopathogen Mycosphaerella graminicola. Curr. Genet. 6, 388–393.

    Article  Google Scholar 

  50. Mullins, E. D., Chen, X., Romaine, P., Raina, R., Geiser, D. M., and Kang, S. (2001) Agrobacterium-mediated transformation of Fusarium oxysporum, an efficient tool for insertional mutagenesis and gene transfer. Phytopath. 91, 173–180.

    Article  CAS  Google Scholar 

  51. Bundock, P., van Attikum, H., den Dulk-Ras, A., and Hooykaas, P. J. (2002) Insertional mutagenesis in yeasts using T-DNA from Agrobacterium tumefaciens. Yeast 19, 529–536.

    Article  PubMed  CAS  Google Scholar 

  52. Liu, Y. G. and Whittier, R. F. (1995) Thermal asymmetric interlaced PCR, automatable amplification and sequencing of inserted end fragments from P1 and YAC clones for chromosome walking. Genomics 25, 674–681.

    Article  PubMed  CAS  Google Scholar 

  53. Liu, Y. G., Mitzukawa, N, Oosumi, T., and Whittier, R. F. (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 8, 457–463.

    Article  PubMed  CAS  Google Scholar 

  54. Mazars, G. R., Moyret, C., Jeanteur, P., and Theillet, C. G. (1991) Direct sequencing by thermal asymmetric PCR. Nucleic Acids Res. 19, 4783.

    Article  PubMed  CAS  Google Scholar 

  55. Hooykaas, P. J. J., Roobol, C., and Schilperoort, R. A. (1979) Regulation of the transfer of Tiplasmid of Agrobacterium tumefaciens. J. Gen. Microbiol. 110, 99–109.

    CAS  Google Scholar 

  56. Bennet, J. W. and Lasure, L. L. (1991) Growth media. in More Gene Manipulations in Fungi. (Bennet, J. W. and Lasure, L. L., eds), Academic Press, San Diego, CA, pp. 441–458.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Casas-Flores, S., Rosales-Saavedra, T., Herrera-Estrella, A. (2004). Three Decades of Fungal Transformation. In: Balbás, P., Lorence, A. (eds) Recombinant Gene Expression. Methods in Molecular Biology, vol 267. Humana Press. https://doi.org/10.1385/1-59259-774-2:315

Download citation

  • DOI: https://doi.org/10.1385/1-59259-774-2:315

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-262-9

  • Online ISBN: 978-1-59259-774-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics