Recombinant Protein Production in Yeasts

  • Danilo Porro
  • Diethard Mattanovich
Part of the Methods in Molecular Biology book series (MIMB, volume 267)

Abstract

Recombinant DNA (rDNA) technologies (genetic, protein, and metabolic engineering) allow the production of a wide range of peptides, proteins, and biochemicals from naturally nonproducing cells. This technology, now approx 25 yr old, is becoming one of the most important technologies developed in the 20th century.

Pharmaceutical products and industrial enzymes were the first biotech products on the world market made by means of rDNA. Despite important advances regarding rDNA applications in mammalian cells, yeasts still represent attractive hosts for the production of heterologous proteins. In this review we summarize the advantages and limitations of the main and promising yeast hosts.

Key Words

Yeasts heterologous proteins expression biotechnology 

References

  1. 1.
    Hitzeman, R. A., Hagie, F. E., Levine, H. L., Goeddel, D. V., Ammerer, G., and Hall, B. D. (1981) Expression of a human gene for interferon in yeast. Nature 293, 717–722.PubMedCrossRefGoogle Scholar
  2. 2.
    Reiser, J., Glumoff, V., Kalin, M., and Ochsner, U. (1990). Transfer and expression of heterologous genes in yeasts other than Saccharomyces cerevisiae. Adv. Biochem. Eng. Biotechnol. 43, 75–102.PubMedGoogle Scholar
  3. 3.
    Romanos, M. A., Scorer, C. A. and Clare, J. J. (1992) Foreign gene expression in yeast: a review. Yeast 8, 423–488.PubMedCrossRefGoogle Scholar
  4. 4.
    Sudbery, P. E., Gleeson, M. A., Veale, R. A., Ledeboer, A. M., and Zoetmulder, M. C. (1988) Hansenula polymorpha as a novel yeast system for the expression of heterologous genes. Biochem. Soc. Trans. 16, 1081–1083.PubMedGoogle Scholar
  5. 5.
    Thill, G., Davis, G., Stillman, C., Tschopp, J. F., Craig, W. S., Velicelebi, G., et al. (1987). The methylotrophic yeast Pichia pastoris as a host for heterologous protein production, in Microbial Growth on C1 Compounds. van Verseveld, H. W., and Duine, J. A., eds. Dordrecht, The Netherlands, pp. 289–296.Google Scholar
  6. 6.
    Blondeau, K., Boze, H., Jung, G., Moulin, G., and Galzy, P. (1994) Physiological approach to heterologous human serum albumin production by Kluyveromyces lactis in chemostat culture. Yeast 10, 1297–1303.PubMedCrossRefGoogle Scholar
  7. 7.
    Gellissen, G. and Hollenberg, C. P. (1997) Application of yeasts in gene expression studies: a comparison of Saccharomyces cerevisiae, Hansenula polymorpha and Kluyveromyces lactis—a review. Gene 190, 87–97.PubMedCrossRefGoogle Scholar
  8. 8.
    Muller, S., Sandal, T., Kamp-Hansen, P., and Dalboge, H. (1998) Comparison of expression systems in the yeasts Saccharomyces cerevisiae, Hansenula polymorpha, Klyveromyces lactis, Schizosaccharomyces pombe and Yarrowia lipolytica. Cloning of two novel promoters from Yarrowia lipolytica. Yeast 14, 1267–1283.PubMedCrossRefGoogle Scholar
  9. 9.
    Raymond, C. K., Bukowski, T., Holderman, S. D., Ching, A. F. T., Vanaja, E., and Stamm, M. R. (1998) Development of the methylotrophic yeast, Pichia methanolica, for the expression of the 65-kilodalton isoform of human glutamate decarboxylase. Yeast 14, 11–23.PubMedCrossRefGoogle Scholar
  10. 10.
    Den Haan, R. and Van Zyl, W. H. (2001) Differential expression of the Trichoderma reesei beta-xylanase II (xyn2) gene in the xylose-fermenting yeast Pichia stipitis. Appl. Microbiol. Biotechnol. 57, 521–527.CrossRefGoogle Scholar
  11. 11.
    Hohenblum, H., Naschberger, S., Weik, R., Katinger, H., and Mattanovich, D. (2001) Production of recombinant human trypsinogen in Escherichia coli and Pichia pastoris. A comparison of expression systems, in Merten, O.-W., Mattanovich, D., Lang, C., Larsson, G., Neubauer, P., Porro, D., et al. eds., Recombinant Protein Production with Prokaryotic and Eukaryotic Cells. A Comparative View on Host Physiology. Kluwer Acad. Publ., Dordrecht, The Netherlands, pp. 339–346.Google Scholar
  12. 12.
    Romanos, M. (1995) Advances in the use of Pichia pastoris for high-level gene expression. Curr. Opin. Biotechnol. 6, 527–533.CrossRefGoogle Scholar
  13. 13.
    Ogawa, Y., Tatsumi, H., Murakami, S., Ishida, Y., Murakami, K., Masaki A., et al. (1990) Secretion of Aspergillus oryzae alkaline protease in an osmophilic yeast, Zygosaccharomyces rouxii. Agric. Biol. Chem. 54, 2521–2529.PubMedGoogle Scholar
  14. 14.
    Brambilla, L., Ranzi, B. M., Vai, M., Alberghina, L., and Porro, D. (2000) Production of heterologous proteins from Zygosaccharomyces bailii. PCT US Patent. Issued/Filed: 14/1/2000. Serial number No. PCT/RP00/00268.Google Scholar
  15. 15.
    Branduardi, P., Valli, M., Alberghina, L., and Porro, D. (2002) Process for expression and secretion of proteins by the non-conventional yeast Zygosaccharomyces bailii. Germany National Patent, Issued/Filed: 10 November 2002. Serial number No. 102 52 245.6.Google Scholar
  16. 16.
    Sakai, Y., Rogi, T., Takeuchi, R., Kato, N., and Tani, Y. (1995) Expression of Saccharomyces adenylate kinase gene in Candida boidinii under the regulation of its alcohol oxidase promoter. Appl. Microbiol. Biotechnol. 42, 860–864.PubMedCrossRefGoogle Scholar
  17. 17.
    Buckholz, R. G. and Gleeson, M. A. (1991) Yeast systems for the commercial production of heterologous proteins. Biotechnology 9, 1067–1072.PubMedCrossRefGoogle Scholar
  18. 18.
    Sudbery, P. E. (1996) The expression of recombinant proteins in yeasts. Curr. Opin. Biotechnol. 7, 517–524.PubMedCrossRefGoogle Scholar
  19. 19.
    Gellissen, G. (2000) Heterologous protein production in methylotrophic yeasts. Appl. Microbiol. Biotechnol. 54, 741–750.PubMedCrossRefGoogle Scholar
  20. 20.
    Dominguez, A., Ferminan, E., Sanchez, M., Gonzalez, F. J., Perez-Campo, F. M., Garcia, S., et al. (1998) Non-conventional yeasts as hosts for heterologous protein production. Int. Microbiol. 1, 131–142.PubMedGoogle Scholar
  21. 21.
    Cereghino, J. L. and Cregg, J. M. (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol. Rev. 24, 45–66.PubMedCrossRefGoogle Scholar
  22. 22.
    Giga-Hama, Y. and Kumagai, H. (1999). Expression system for foreign genes using the fission yeast Schizosaccharomyces pombe. Biotechnol. Appl. Biochem. (1999) 30, 235–244.PubMedGoogle Scholar
  23. 23.
    James, S. A., Collins, M. D., and Roberts, I. N. (1994) Genetic interrelationship among species of the genus Zygosaccharomyces as revealed by small-subunit rRNA gene sequences. Yeast 10, 871–881.PubMedCrossRefGoogle Scholar
  24. 24.
    Steels, H., Bond, C. J., Collins, M. D., Roberts, I. N., Stratford, M., and James, S. A. (1999) Zygosaccharomyces lentus sp. nov., a new member of the yeast genus Zygosaccharomyces Barker. Int. J. Syst. Bacteriol. 49, 319–327.PubMedCrossRefGoogle Scholar
  25. 25.
    Kurtzman, C. P., Robnett, C. J., and Basehoar-Powers, E. (2001) Zygosaccharomyces kombuchaensis, a new ascosporogenous yeast from “Kombucha tea.” FEMS Yeast Res. 1, 133–138.PubMedCrossRefGoogle Scholar
  26. 26.
    Makdesi, A. K. and Beuchat, L. R. (1996) Evaluation of media for enumerating heat-stressed, benzoate-resistant Zygosaccharomyces bailii. Int. J. Food Microbiol. 33, 169–181.PubMedCrossRefGoogle Scholar
  27. 27.
    Sousa, M. J., Miranda, L., Corte-Real, M., and Leao, C. (1996) Transport of acetic acid in Zygosaccharomyces bailii: effects of ethanol and their implications on the resistance of the yeast to acidic environments. Appl. Environ. Microbiol. 62, 3152–3157.PubMedGoogle Scholar
  28. 28.
    Wegener, G. H. and Harder, W. (1987) Methylotrophic yeasts—1986. Antonie van Leeuwenhoek 53, 29–36.CrossRefGoogle Scholar
  29. 29.
    Cregg, J. M., Cereghino, J. L., Shi, J., and Higgins, D. R. (2000) Recombinant protein expression in Pichia pastoris. Mol. Biotechnol. 16, 23–52.PubMedCrossRefGoogle Scholar
  30. 30.
    Shen, S., Sulter, G., Jeffries, T. W. and Cregg, J. M. (1998) A strong nitrogen source-regulated promoter for controlled expression of foreign genes in the yeast Pichia pastoris. Gene 216, 93–102.PubMedCrossRefGoogle Scholar
  31. 31.
    Waterham, H. R., Digan, M. E., Koutz, P. J., Lair, S. V. and Cregg, J. M. (1997) Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene 186, 37–44.PubMedCrossRefGoogle Scholar
  32. 32.
    Hollenberg, C. P. and Gellissen, G. (1997) Production of recombinant proteins by methylotrophic yeasts. Curr. Opin. Biotechnol. 8, 554–560.PubMedCrossRefGoogle Scholar
  33. 33.
    Burgers, P. M. and Percival, K. J. (1987) Transformation of yeast spheroplasts without cell fusion. Anal. Biochem. 163, 391–397.PubMedCrossRefGoogle Scholar
  34. 34.
    Agatep, R., Kirkpatrick, R. D., Parchaliuk, D. L., Woods, R. A., and Gietz, R. D. (1998) Transformation of Saccharomyces cerevisiae by the lithium acetate/single-stranded carrier DNA/polyethylene glycol (LiAc/ss-DNA/PEG) protocol. Technical Tips Online (http://tto.trends.com).
  35. 35.
    Sanchez, M., Iglesias, F. J., Santamaria, C., and Dominguez, A. (1993) Transformation of Kluyveromyces lactis by electroporation. Appl. Environm. Microbiol. 59, 2087–2092.Google Scholar
  36. 36.
    Hasslacher, M., Schall, M., Hayn, M., Bona, R., Rumbold, K., Luckl, J., et al. (1997) High-level intracellular expression of hydroxynitrile lyase from the tropical rubber tree Hevea brasiliensis in microbial hosts. Protein Expr. Purif. 11, 61–71.PubMedCrossRefGoogle Scholar
  37. 37.
    Clare, J. J., Rayment, F. B., Ballantine, S. P., Sreekrishna, K., and Romanos, M. A. (1991) High-level expression of tetanus toxin fragment C in Pichia pastoris strains containing multiple tandem integrations of the gene. Bio/Technology 9, 455–460.PubMedCrossRefGoogle Scholar
  38. 38.
    Richardson, P. T., Roberts, L. M., Gould, J. H., and Lord, J. M. (1988) The expression of functional ricin B-chain in Saccharomyces cerevisiae. Biochim Biophys. Acta 950, 385–394.PubMedGoogle Scholar
  39. 39.
    Binder, M., Schanz, M., and Hartig, A. (1991) Vector-mediated over-expression of catalase A in the yeast Saccharomyces cerevisiae induces inclusion body formation. Eur. J. Cell Biol. 54, 305–312.PubMedGoogle Scholar
  40. 40.
    Choi, S. Y., Lee, S. Y. and Bock, R. M. (1993) High level expression in Saccharomyces cerevisiae of an artificial gene encoding a repeated tripeptide aspartyl-phenylyalanyl-lysine. J. Biotechnol. 30, 211–223.PubMedCrossRefGoogle Scholar
  41. 41.
    Weik, R., Francky, A., Striedner, G., Raspor, P., Bayer, K., and Mattanovich, D. (1998) Recombinant expression of alliin lyase from garlic (Allium sativum) in bacteria and yeasts. Planta Med. 64, 387–388.PubMedCrossRefGoogle Scholar
  42. 42.
    Barr, K. A., Hopkins, S. A., and Sreekrishna, K. (1992) Protocol for efficient secretion of HSA developed from Pichia pastoris. Pharm. Eng. 12, 48–51.Google Scholar
  43. 43.
    Kauffman, K. J., Pridgen, E. M., Doyle, F. J. 3rd, Dhurjati, P. S., and Robinson, A. S. (2002) Decreased protein expression and intermittent recoveries in BiP levels result from cellular stress during heterologous protein expression in Saccharomyces cerevisiae. Biotechnol. Prog. 18, 942–950.PubMedCrossRefGoogle Scholar
  44. 44.
    Hohenblum, H., Borth, N., and Mattanovich, D. (2003) Assessing viability and cell-associated product of recombinant protein producing Pichia pastoris with flow cytometry. J. Biotechnol. 102, 281–290.PubMedCrossRefGoogle Scholar
  45. 45.
    Patil, C. and Walter, P. (2001) Intracellular signaling from the endoplasmic reticulum to the nucleus: the unfolded protein response in yeast and mammals. Curr. Opin. Cell Biol. 13, 349–355.PubMedCrossRefGoogle Scholar
  46. 46.
    Welihinda, A. A., Tirasophon, W., and Kaufman, R. J. (1999) The cellular response to protein misfolding in the endoplasmic reticulum. Gene Expr. 7, 293–300.PubMedGoogle Scholar
  47. 47.
    Casagrande, R., Stern, P., Diehn, M., Shamu, C., Osario, M., Zuniga, M., et al. (2000) Degradation of proteins from the ER of S. cerevisiae requires an intact unfolded protein response pathway. Mol. Cell 5, 729–735.PubMedCrossRefGoogle Scholar
  48. 48.
    Vai, M., Brambilla, L., Orlandi, I., Rota, N., Ranzi, B. M., Alberghina, L., et al. (2000). Improved secretion of native human insulin-like growth factor 1 from gas1 mutant Saccharomyces cerevisiae cells. Appl. Environ. Microbiol. 66, 5477–5479.PubMedCrossRefGoogle Scholar
  49. 49.
    Gemmill, T. R. and Trimble, R. B. (1999) Overview of N-and O-linked oligosaccharide structures found in various yeast species. Biochim. Biophys. Acta 1426, 227–237.PubMedGoogle Scholar
  50. 50.
    Sumi, A., Okuyama, K., Kobayashi, K., Ohtani, W., Ohmura T., and Yokoyama, K. (1999) Purification of recombinant human serum albumin. Efficient purification using STREAMLINE. Bioseparation 8, 195–200.PubMedCrossRefGoogle Scholar
  51. 51.
    Weik, R., Striedner, G., Francky, A., Raspor, P., Bayer, K., and Mattanovich, D. (1999) Induction of oxidofermentative ethanol formation in recombinant cells of Saccharomyces cerevisiae yeasts. Food Technol. Biotechnol. 37, 191–194.Google Scholar
  52. 52.
    Hong, F., Meinander, N. Q., and Jonsson, L. J. (2002) Fermentation strategies for improved heterologous expression of lactase in Pichia pastoris. Biotechnol. Bioeng. 79, 438–449.PubMedCrossRefGoogle Scholar
  53. 53.
    Zhang, W., Smith, L. A., Plantz, B. A., Schlegel, V. L. and Meagher, M. M. (2002) Design of methanol feed control in Pichia pastoris fermentations based upon a growth model. Biotechnol. Prog. 18, 1392–1399.PubMedCrossRefGoogle Scholar
  54. 54.
    Loewen, M. C., Liu, X., Davies, P. L., and Daugulis, A. J. (1997) Biosynthetic production of type II fish antifreeze protein: fermentation by Pichia pastoris. Appl Microbiol. Biotechnol. 48, 480–486.PubMedCrossRefGoogle Scholar
  55. 55.
    Curvers, S., Brixius, P., Klauser, T., Thommes, J., Weuster-Botz, D., Takors, R., et al. (2001) Human chymotrypsinogen B production with Pichia pastoris by integrated development of fermentation and downstream processing. Part 1. Fermentation. Biotechnol. Prog. 17, 495–502.PubMedCrossRefGoogle Scholar
  56. 56.
    Porro, D., Martegani, E., Ranzi, B. M. and Alberghina, L. (1991) Heterologous gene expression in continuous cultures of budding yeast. Appl. Microbiol. Biotechnol. 34, 632–636.PubMedCrossRefGoogle Scholar
  57. 57.
    Goodey, A. R. (1993) The production of heterologous plasma proteins. Trends Biotechnol. 11, 430–433.PubMedCrossRefGoogle Scholar
  58. 58.
    Stephanopoulos, G., Aristodou. A., and Nielsen, J. (1998) Metabolic Engineering. Academic Press, Inc., San Diego, CA.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2004

Authors and Affiliations

  • Danilo Porro
    • 1
  • Diethard Mattanovich
    • 2
  1. 1.Department of Biotechnology and BioscienceUniversity of Milano-BicoccaMilanoItalia
  2. 2.Institute of Applied MicrobiologyUniversity of Natural Resources and Applied Life SciencesViennaAustria

Personalised recommendations