Skip to main content

Engineering of Bacteria Using the Vitreoscilla Hemoglobin Gene to Enhance Bioremediation of Aromatic Compounds

  • Protocol
Environmental Microbiology

Part of the book series: Methods in Biotechnology ((MIBT,volume 16))

  • 1464 Accesses

Abstract

The hemoglobin (VHb) from the Gram-negative bacterium Vitreoscilla was originally discovered in 1966 (1). It was initially thought to be a soluble form of the terminal oxidase of the respiratory chain (cytochrome bo) until its correct identification as a hemoglobin in 1986 (2). It was originally proposed that the role of VHb in Vitreoscilla is to help provide oxygen to the cell, particularly under conditions of oxygen shortage, to enhance respiratory ATP production. This idea fits well with the large induction in VHb levels that occurs at low oxygen concentrations (3). It was further proposed that VHb may deliver oxygen directly to cytochrome bo (3); supportive evidence, but not proof, exists for this idea (46).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Webster, D. A. and Hackett, D. P. (1966) The purification and properties of cytochrome o from Vitreoscilla. J. Biol. Chem. 241, 3308–3315.

    PubMed  CAS  Google Scholar 

  2. Wakabayashi, S., Matsubara, H., and Webster, D. A. (1986) Primary sequence of a dimeric bacterial haemoglobin from Vitreoscilla. Nature 322, 481–483.

    Article  PubMed  CAS  Google Scholar 

  3. Webster, D. A. (1987) Structure and function of bacterial hemoglobin and related proteins, in Advances in Inorganic Biochemistry, Vol. 7, Heme Proteins (Eichhorn, G. L. and Marzilli, L., eds.), Elsevier Science Publishing Co., New York, pp. 245–265.

    Google Scholar 

  4. Tsai, P. S., Nageli, M., and Bailey, J. E. (1996) Intracellular expression of Vitreoscilla hemoglobin modifies microaerobic Escherichia coli metabolism through elevated concentration and specific activity of cytochrome o. Biotechnol. Bioengin. 49, 151–160.

    Article  CAS  Google Scholar 

  5. Ramandeep, Hwang, K. W., Raje, M., Kim, K. J., Stark, B. C., Dikshit, K. L., and Webster, D. A. (2001) Vitreoscilla hemoglobin: intracellular localization and binding to membranes. J. Biol. Chem. 276, 24,781–24,789.

    Article  PubMed  CAS  Google Scholar 

  6. Park, K. W., Kim, K. J., Howard, A. J., Stark, B. C., and Webster, D. A. (2002) Vitreoscilla hemoglobin binds to subunit I of cytochrome bo ubiquinol oxidases. J. Biol. Chem. 277, 33,334–33,337.

    Article  PubMed  CAS  Google Scholar 

  7. Dikshit, K. L. and Webster, D. A. (1988) Cloning, characterization and expression of the bacterial globin gene from Vitreoscilla in Escherichia coli. Gene 70, 377–386.

    Article  PubMed  CAS  Google Scholar 

  8. Khosla, C. and Bailey, J. E. (1988) The Vitreoscilla hemoglobin gene: molecular cloning, nucleotide sequencing and genetic expression in E. coli. Mol. Gen. Genet. 214, 158–161.

    Article  PubMed  CAS  Google Scholar 

  9. Khosla, C. and Bailey, J. E. (1989) Characterization of the oxygen-dependent promoter of the Vitreoscilla hemoglobin gene in Escherichia coli. J. Bacteriol. 171, 5995–6004.

    PubMed  CAS  Google Scholar 

  10. Dikshit, K. L., Dikshit, R. P., and Webster, D. A. (1990) Study of Vitreoscilla globin (vgb) gene expression and promoter activity in E. coli through transcriptional fusion. Nucl. Acid. Res. 18, 4149–4155.

    Article  CAS  Google Scholar 

  11. Dikshit, K. L., Dikshit, R. P., and Webster, D. A. (1991) Transcriptional control of Vitreoscilla hemoglobin synthesis, in Structure and Function of Invertebrate Oxygen Carriers (Vinogradov, S. N. and Kapp, O. H., eds.), Springer-Verlag, New York, pp. 313–321.

    Google Scholar 

  12. Joshi, M. and Dikshit, K. L. (1994) Oxygen dependent regulation of Vitreoscilla globin gene: evidence for positive regulation by FNR. Biochem. Biophys. Res. Comm. 202, 535–542.

    Article  PubMed  CAS  Google Scholar 

  13. Yang, J. G. (2002) Study of Vitreoscilla globin gene (vgb) expression using mutations in vgb promoter and chromosomal fnr and arcA genes. P h.D. thesis, Illinois Institute of Technology, Chicago, IL.

    Google Scholar 

  14. Kallio, P. T. and Bailey, J. E. (1996) Intracellular expression of Vitreoscilla hemoglobin (VHb) enhances total protein secretion and improves the production of α-amylase and neutral protease in Bacillus subtilis. Biotechnol. Prog. 12, 31–39.

    Article  PubMed  CAS  Google Scholar 

  15. Khosravi, M., Webster, D. A., and Stark, B. C. (1990) Presence of the bacterial hemoglobin gene improves α-amylase production of a recombinant Escherichia coli strain. Plasmid 24, 1–5.

    Article  Google Scholar 

  16. Buddenhagen, R. E., Webster, D. A., and Stark, B. C. (1996) Enhancement by bacterial hemoglobin of amylase production in recombinant E. coli occurs under conditions of low O2. Biotechnol. Lett. 102, 695–700.

    Article  Google Scholar 

  17. Magnolo, S. K., Leenutaphong, D. L., DeModena, J. A., Curtis, J. E., Bailey, J. E., Galazzo, J. L., et al. (1991) Actinorhodin production by Streptomyces coelicolor and growth of Streptomyces lividans are improved by the expression of a bacterial hemoglobin. Bio/Technology 9, 473–476.

    Article  PubMed  CAS  Google Scholar 

  18. DeModena, J. A., Gutierrez, S., Velasco, J., Fernandez, F. J., Fachini, R. A., Galazzo, J. L., et al. (1993) The production of cephalosporin C by Acremonium chrysogenum is improved by the intracellular expression of a bacterial hemoglobin. Bio/Technology 11, 926–929.

    Article  PubMed  CAS  Google Scholar 

  19. Chen, W., Hughes, D. E., and Bailey, J. E. (1994) Intracellular expression of Vitreoscilla hemoglobin alters the aerobic metabolism of Saccharomyces cerevisiae. Biotechnol. Prog. 10, 308–313.

    Article  PubMed  CAS  Google Scholar 

  20. Wei, M. L., Webster, D. A., and Stark, B. C. (1998) Metabolic engineering of Serratia marcescens with the bacterial hemoglobin gene: alterations in fermentation pathways. Biotechnol. Bioeng. 59, 640–646.

    Article  PubMed  CAS  Google Scholar 

  21. Moat, A. G. and Foster, J. W. (1988) Microbial Physiology, second edition. John Wiley and Sons, New York.

    Google Scholar 

  22. Liu, S. C., Webster, D. A., Wei, M. L., and Stark, B. C. (1996) Genetic engineering to contain the Vitreoscilla hemoglobin gene enhances degradation of benzoic acid by Xanthomonas maltophilia, Biotechnol. Bioengin. 49, 101–105.

    Article  CAS  Google Scholar 

  23. Spanggord, R. J., Spain, J. C., Nishino, S. F., and Mortelmans, K. E. (1991) Biodegradation of 2,4-dinitrotoluene by a Pseudomonas sp. Appl. Environ. Microbiol. 57, 3200–3205.

    PubMed  CAS  Google Scholar 

  24. Suen, W. C. and Spain, J. C. (1993) Cloning and characterization of Pseudomonas sp. strain DNT genes for 2,4-dinitrotoluene degradation. J. Bacteriol. 175, 1831–1837.

    PubMed  CAS  Google Scholar 

  25. Johnson, G. R., Jain, R. K., and Spain, J. C. (2000) Properties of the trihydroxytoluene oxygenase from Burkholderia cepacia R34: an extradiol dioxygenase from the 2,4-dinitrotoluene pathway. Arch. Microbiol. 173, 86–90.

    Article  PubMed  CAS  Google Scholar 

  26. Patel, S. M., Stark, B. C., Hwang, K. W., Dikshit, K. L., and Webster, D. A. (2000) Cloning and expression of Vitreoscilla hemoglobin gene in Burkholderia sp. strain DNT for enhancement of 2,4-dinitrotoluene degradation. Biotechnol. Prog. 16, 26–30.

    Article  PubMed  CAS  Google Scholar 

  27. Nasr, M. A., Hwang, K. W., Akbas, M., Webster, D. A., and Stark, B. C. (2001) Effects of culture conditions on enhancement of 2,4-dinitrotoluene degradation by Burkholderia engineered with the Vitreoscilla hemoglobin gene. Biotechnol. Prog. 17, 359–361.

    Article  PubMed  CAS  Google Scholar 

  28. Geckil, H., Stark, B. C., and Webster, D. A. (2001) Cell growth and oxygen uptake of Escherichia coli and Pseudomonas aeruginosa are differently affected by the genetically engineered Vitreoscilla hemoglobin gene. J. Biotechnol. 85, 57–66.

    Article  PubMed  CAS  Google Scholar 

  29. Fish, P. A., Webster, D. A., and Stark, B. C. (2000) Vitreoscilla hemoglobin enhances the first step in 2,4-dinitrotoluene degradation in vitro and at low aeration in vivo. J. Molec. Catal. B: Enzymatic 9, 75–82.

    Article  CAS  Google Scholar 

  30. Herrero, M., de Lorenzo, V., and Timmis, K. N. (1990) Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in Gram-negative bacteria. J. Bacteriol. 172, 6557–6567.

    PubMed  CAS  Google Scholar 

  31. De Lorenzo, V., Herrero, M., Jakubzik, U., and Timmis, K. N. (1990) Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in Gram-negative eubacteria. J. Bacteriol. 172, 6568–6572.

    PubMed  Google Scholar 

  32. Chung, J. W., Webster, D. A., Pagilla, K. R., and Stark, B. C. (2001) Chromosomal integration of the Vitreoscilla hemoglobin gene in Burkholderia and Pseudomonas for the purpose of producing stable engineered strains with enhanced bioremediating ability. J. Indust. Microbiol. Biotechnol. 27, 27–33.

    Article  CAS  Google Scholar 

  33. So, J., Webster, D. A., Stark, B. C., and Pagilla, K. R. (2004) Enhancement of 2-4-dinitrotoluene biodegradation by Burkholderia sp. in sand bioreactors using bacterial hemoglobin technology. Biodegradation, in press.

    Google Scholar 

  34. Lin, J. M., Stark, B. C., and Webster, D. A. (2003) Effects of Vitreoscilla hemoglobin on the 2,4-dinitrotoluene (2,4-DNT) dioxygenase activity of Burkholderia and on 2,4-DNT degradation in two-phase bioreactors. J. Ind. Microbiol. Biotechnol. 30, 362–368.

    Article  PubMed  CAS  Google Scholar 

  35. Dikshit, K. L., Orii, Y., Navani, N., Patel, S., Huang, H. Y., Stark, B. C., et al. (1998) Site-directed mutagenesis of bacterial hemoglobin: the role of glutamine (E7) in oxygen-binding in the distal heme pocket. Arch. Biochem. Biophys. 349, 161–166.

    Article  PubMed  CAS  Google Scholar 

  36. Lee, S. Y., Stark, B. C., and Webster, D. A. (2004) Structure-function studies of the Vitreoscilla hemoglobin D-region. Biochem. Biophys. Res. Commun., in press.

    Google Scholar 

  37. Tarricone, C., Galizzi, A., Coda, A., Ascenzi, P., and Bolognesi, M. (1997) Unusual structure of the oxygen-binding site in the dimeric bacterial hemoglobin from Vitreoscilla sp. Structure 5, 497–507.

    Article  PubMed  CAS  Google Scholar 

  38. Kim, Y. (2002) Evaluation of genetic engineering with mutant bacterial hemoglobin genes as a method to enhance bioremediation of aromatic compounds and survival of pUC-based plasmids in Psuedomonas. PhD thesis, Illinois Institute of Technology, Chicago, IL.

    Google Scholar 

  39. Urgun-Demirtas, M., Pagilla, K. R., Stark, B. C., and Webster, D. A. (2003) Biodegradation of 2-chlorobenzoate by recombinant Burkholderia cepacia expressing Vitreoscilla hemoglobin under variable levels of oxygen availability. Biodegradation, 14, 357–365.

    Article  PubMed  CAS  Google Scholar 

  40. Arensdorf, J. J. and Focht, D. D. (1994) Formation of chlorocatechol meta cleavage products by a pseudomonad during metabolism of monochlorobiphenyls. Appl. Environ. Microbiol. 60, 2884–2889.

    PubMed  CAS  Google Scholar 

  41. Dogan, I. (2002) Effect of Vitreoscilla hemoglobin gene on the production of biosurfactant in Gordonia amarae. PhD thesis, Illinois Institute of Technology, Chicago, IL.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Stark, B.C., Webster, D.A., Pagilla, K.R. (2004). Engineering of Bacteria Using the Vitreoscilla Hemoglobin Gene to Enhance Bioremediation of Aromatic Compounds. In: Walker, J.M., Spencer, J.F.T., Ragout de Spencer, A.L. (eds) Environmental Microbiology. Methods in Biotechnology, vol 16. Humana Press. https://doi.org/10.1385/1-59259-765-3:379

Download citation

  • DOI: https://doi.org/10.1385/1-59259-765-3:379

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-116-5

  • Online ISBN: 978-1-59259-765-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics