Skip to main content

Extracellular Hydrolytic Enzymes Produced by Phytopathogenic Fungi

  • Protocol
Environmental Microbiology

Part of the book series: Methods in Biotechnology ((MIBT,volume 16))

  • 1526 Accesses

Abstract

Plant cell walls give plants shape and support, help to regulate physiological processes including defense responses, and act as physical barriers to pathogen invasion. Most plant pathogens produce an array of enzymes capable of degrading plant cell-wall components (1,2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guo, W., González-Candelas, L., and Kolattukudy, P. E. (1995) Cloning of a novel constitutively expressed pectate lyase gene pelB from Fusarium solani f. sp. pisi (Nectria haematococca, Mating Type VI) and characterization of the gene product expressed in Pichia pastoris. J. Bacteriol. 177, 7070–7077.

    PubMed  CAS  Google Scholar 

  2. Schäfer, W. (1994) Molecular mechanisms of fungal pathogenicity to plants. Annu. Rev. Phytopathol. 32, 461–477.

    Article  Google Scholar 

  3. Freelove, A. C. J., Bolam, D. N., White, P., Hazlewood, G. P., and Gilbert, H. J. (2001) A novel carbohydrate-binding protein is a component of the plant cell wall-degrading complex of Piromyces equi. J. Biol. Chem. 276, 43,010–43,017.

    Article  PubMed  CAS  Google Scholar 

  4. Sachslehner, A., Nidetzky, B., Kulbe, K. D., and Haltrich, D. (1998) Induction of mannanase, xylanase, and endoglucanase activities in Sclerotium rolfsii. Appl. Environ. Microbiol. 64, 594–600.

    PubMed  CAS  Google Scholar 

  5. Berry, D. R. (1975) The environmental control of the physiology of filamentous fungi, in The Filamentous Fungi (Smith, J. E., Berry, D. R., and Kristiansen, B., eds.), Edward Arnold, London.

    Google Scholar 

  6. Acuña-Argüelles, M. E., Gutiérrez-Rojas, M., Viniegra-González, G., and Favela-Torres, E. (1995) Production and properties of three pectinolytic activities produced by Aspergillus niger in submerged and solid-state fermentation. Appl. Microbiol. Biotechnol. 43, 808–814.

    Article  PubMed  Google Scholar 

  7. Rogers, L. M., Kim, Y.-K., Guo, W., González-Candelas, L., Li, D., and Kolattukudy, P. E. (2000) Requirement for either a host-or pectin-induced pectate lyase for infection of Pisum sativum by Nectria hematococca. PNAS 97, 9813–9818.

    Article  PubMed  CAS  Google Scholar 

  8. García-Maceira, F., Di Pietro, A., Huertas-González, M. D., Ruiz-Roldán, M. C., and Roncero, M. I. G. (2001) Molecular characterization of an endopolygalacturonase from Fusarium oxysporum expressed during early stages of infection. Appl. Environ. Microbiol. 67, 2191–2196.

    Article  PubMed  Google Scholar 

  9. Di Pietro, A. and Roncero, M. I. G. (1998) Cloning, expression and role in pathogenicity of pg1 encoding the major extracellular endopolygalacturonase of the vascular wilt pathogen Fusarium oxysporum. Mol. Plant-Microbe Interact. 11, 91–98.

    Article  PubMed  Google Scholar 

  10. Doss, R. P. (1999) Composition and enzymatic activity of the extracellular matrix secreted by germlings of Botrytis cinerea. Appl. Environ. Microbiol. 65, 404–408.

    PubMed  CAS  Google Scholar 

  11. Doss, R. P., Potter, S. W., Soeldner, A. H., Christian, J. K., and Fukunaga, L. E. (1995) Adhesion of germlings of Botrytis cinerea. Appl. Environ. Microbiol. 61, 260–265.

    PubMed  CAS  Google Scholar 

  12. Vierheilig, H., Alt, M., Lange, J., Gutrella, M., Wiemken, A., and Boller, T. (1995) Colonization of transgenic tobacco constitutively expressing pathogenesis-related proteins by the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Appl. Environ. Microbiol. 61, 3031–3034.

    PubMed  CAS  Google Scholar 

  13. Cervone, F., De Lorenzo, G., Aracri, B., Bellincampi, D., Caprari, C., Clark, A. J., et al. (1996) The role of polygalacturonase, PGIP and pectin oligomers in fungal infection, in Pectins and Pectinases (Visser, J. and Voragen, A. G. J., eds.), Elsevier Science, The Netherlands.

    Google Scholar 

  14. Salzman, R. A., Tikhonova, I., Bordelon, B. P., Hasegawa, P. M., and Bressan, R. A. (1998) Coordinate accumulation of antifungal proteins and hexoses constitutes a developmentally controlled defense response during fruit ripening in grape. Plant. Physiol. 117, 465–472.

    Article  PubMed  CAS  Google Scholar 

  15. Kubicek, C. P., Mach, R. L., Peterbauer, C. K., and Lorito, M. (2001) Trichoderma: from genes to biocontrol. J. Plant Pathol. 83, 11–23.

    CAS  Google Scholar 

  16. Pere, J., Puolakka, A., Nousiainen, P., and Buchert, J. (2001) Action of purified Trichoderma reesei cellulases on cotton fibers and yarn. J. Biotechnol. 89, 247–255.

    Article  PubMed  CAS  Google Scholar 

  17. Mach, R. L., Seiboth, B., Myasnikov, A., González, R., Strauss, J., Harkki, A. M., et al. (1995) The bgl1 gene of Trichoderma reesei QM 9414 encodes an extracellular, cellulose-inducible β-glucosidase involved in cellulase induction by sophorose. Mol. Microbiol. 16, 687–697.

    Article  PubMed  CAS  Google Scholar 

  18. Seiboth, B., Hakola, S., Mach, R. L., Suominen, P. L., and Kubicek, C. P. (1997) Role of four major cellulases in triggering of cellulase gene expression by cellulose in Trichoderma reesei. J. Bacteriol. 179, 5318–5320.

    PubMed  CAS  Google Scholar 

  19. Sunna, A. and Antranikian, G.(1997) Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol. 17, 39–67.

    Article  PubMed  CAS  Google Scholar 

  20. Kulkarni, N., Shendye, A., and Rao, M. (1999) Molecular and biotechnological aspects of xylanases. FEMS Microbiol. Rev. 23, 411–456.

    Article  PubMed  CAS  Google Scholar 

  21. Sinnot, M. L. (1990) Catalytic mechanisms of enzymic glucosyl transfer. Chem. Rev. 90, 1171–1202.

    Article  Google Scholar 

  22. Kirk, T. K. and Farrell, R. L. (1987) Enzymatic “combustion”: the microbial degradation of lignin. Annu. Rev. Microbiol. 41, 465–505.

    Article  PubMed  CAS  Google Scholar 

  23. Caramelo, L., Martínez, M. J., and Martínez, A. T. (1999) A search for ligninolytic peroxidases in the fungus Pleurotus eryngii involving α-keto-γ-thiomethylbutyric acid and lignin model dimers. Appl. Environ. Microbiol. 65, 916–922.

    PubMed  CAS  Google Scholar 

  24. Xu, F., Kulys, J. J., Duke, K., Li, K., Krikstopaitis, K., Deussen, H. J., et al. (2000) Redox chemistry in laccase catalyzed oxidation of N-hydroxy compounds. Appl. Environ. Microbiol. 66, 2052–2056.

    Article  PubMed  CAS  Google Scholar 

  25. O’Malley, D. M., Whetton, R., Bao, W., Chen, C. L., and Sederoff, R. R. (1993) The role of laccase in lignification. Plant J. 4, 751–757.

    Article  Google Scholar 

  26. Thurston, C. F. (1994) The structure and function of fungal laccases. Microbiology 140, 19–26.

    Article  CAS  Google Scholar 

  27. Slomczynski, D., Nakas, J. P., and Tanenbaum, S. W. (1995) Production and characterization of laccase from Botrytis cinerea. Appl. Environ. Microbiol. 61, 907–912.

    PubMed  CAS  Google Scholar 

  28. Saparrat, M. C. N., Martínez, M. J., Tournier, H. A., Cabello, M. N., and Arambarri, A. M. (2001) Production of ligninolytic enzymes by Fusarium solani strains isolated from different substrata. World J. Microbiol. Biotechnol. 16, 799–803.

    Article  Google Scholar 

  29. Sakai, T., Sakamoto, T., Hallaert, J., and Vandamme, E. J. (1993) Pectin, pectinase and protopectinase: production, properties and applications. Adv. Appl. Microbiol. 39, 213–294.

    Article  PubMed  CAS  Google Scholar 

  30. Rombouts, F. M. and Pilnik, W. (1980) Pectic enzymes, in Microbial Enzymes and Bioconversion (Pilnik, W., ed.), Academic Press, London, UK, pp. 227–282.

    Google Scholar 

  31. Lang, C. and Dörnenburg, H. (2000) Perspectives in the biological function and the technological application of polygalacturonases. Appl. Microbiol. Biotechnol. 53, 366–375.

    Article  PubMed  CAS  Google Scholar 

  32. Sakai, T. and Okushima, M. (1978) Protopectin-solubilizing enzyme from Trichosporon penicillatum. Agric. Biol. Chem. 42, 2427–2429.

    CAS  Google Scholar 

  33. Sakai, T. and Sakamoto, T. (1990) Purification and some properties of a protopectin-solubilizing enzyme that has potent activity on sugar beet protopectin. Agric. Biol. Chem. 54, 879–889.

    CAS  Google Scholar 

  34. Brinton, C. S., Wichmann, H. J., Willaman, J. J., Wilson, C. P., and Dore, W. H. (1927) Definitions written by the Committee on Nomenclature of Pectin of the Agriculture-Food Division. J. Am. Chem. Soc. 49, 38–40.

    Google Scholar 

  35. Eggert, C., Temp, U., and Eriksson, K.-E. L. (1996) The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus purification and characterization of the laccase. Appl. Environ. Microbiol. 62, 1151–1158.

    PubMed  CAS  Google Scholar 

  36. Jung, H.-J. G., Valdez, F. R., Abad, A. R., Blanchette, R. A., and Hatfield, R. D. (1992) Effect of white rot basidiomycetes on chemical composition and in vitro digestibility of oat straw and alfalfa stems. J. Anim. Sci. 70, 1928–1935.

    PubMed  CAS  Google Scholar 

  37. Reid, I. D. (1989) Optimization of solid-state fermentation for selective delignification of aspen wood with Phlebia tremellosa. Enzyme Microb. Technol. 11, 786–803.

    Article  CAS  Google Scholar 

  38. Martínez, A. T., Camarero, S., Guillén, F., Gutiérrez, A., Muñoz, C., Varela, E., et al. (1994) Progress in biopulping of non-woody materials: chemical, enzymatic and ultrastructural aspects of wheat straw delignification with ligninolytic fungi from the genus Pleurotus. FEMS Microbiol. Rev. 13, 265–274.

    Article  Google Scholar 

  39. Biely, P. (1985) Microbial xylanolytic systems. Trends Biotechnol. 3, 286–290.

    Article  CAS  Google Scholar 

  40. Viikari, L., Kantelinen, A., Sundquist, J., and Linko, M. (1994) Xylanases in bleaching: from an idea to the industry. FEMS Microbiol. Rev. 13, 335–350.

    Article  CAS  Google Scholar 

  41. Park, J.-W., Park, K., Song, H., and Shin, H. (2002) Saccharification and adsorption characteristics of modified cellulases with hydrophilic/hydrophobic copolymers. J. Biotechnol. 93, 203–208.

    Article  PubMed  CAS  Google Scholar 

  42. Viesturs, U., Leite, M., Treimanis, A., Eremeeva, T., Apsite, A., Eisimonte, M., et al. (1996) Production of cellulases and xylanases by Trichoderma viride and biological processing of lignocellulose and recycled paper fibers. Appl. Biochem. Biotechnol. 57/58, 349–360.

    Article  CAS  Google Scholar 

  43. Saxena, A., Kuhad, R. C., Saxena, R. K., and Gupta, R. (1994) Production and characterization of a xylanase from Cyathus stercoreus. World J. Microbiol. Biotechnol. 10, 293–295.

    Article  CAS  Google Scholar 

  44. Jung H., Xu, F., and Li, K. (2002) Purification and characterization of laccase from wood-degrading fungus Trichophyton rubrum LKY-7. Enzym. Microb. Technol. 30, 161–168.

    Article  CAS  Google Scholar 

  45. Miller, L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem. 31, 426–428.

    Article  CAS  Google Scholar 

  46. Ghose, T. K. (1987) Measurement of cellulase activities. Pure Appl. Chem. 59, 257–268.

    Article  CAS  Google Scholar 

  47. Bailey, M. J., Biely, P., and Poutanen, K. (1992) Interlaboratory testing of methods for assay of xylanase activity. J. Biotechnol. 23, 257–270.

    Article  CAS  Google Scholar 

  48. Ghose, T. K. and Bisaria, V. S. (1987) Measurement of hemicellulase activities. Part 1: xylanases. Pure Appl. Chem. 59, 1739–1752.

    Article  CAS  Google Scholar 

  49. Vares, T., Kalsi, M., and Hatakka, A. (1995) Lignin peroxidases, manganase peroxidase, and other ligninolytic enzymes produced by Phlebia radiata during solidstate fermentation of wheat straw. Appl. Environ. Microbiol. 61, 3515–3520.

    PubMed  CAS  Google Scholar 

  50. Machuca, A. and Ferraz, A. (2001) Hydrolytic and oxidative enzymes produced by white-and brown-rot fungi during Eucaliptus grandis decay in solid medium. Enzyme Microb. Technol. 29, 386–391.

    Article  CAS  Google Scholar 

  51. Somogyi, M. (1952) Notes on sugar determination. J. Biol. Chem. 195, 19–23.

    CAS  Google Scholar 

  52. Nelson, N. (1944) A photometric adaptation of the Somogyi method for determination of glucose. J. Biol. Chem. 153, 376–380.

    Google Scholar 

  53. Cavallito, S. F., Hours, R. H., and Mignone, C. F. (1997) Quantification of pectin-releasing activity of protopectinase-SE from Geotrichum klebhanii. Biotechnol. Tech. 11, 331–334.

    Article  Google Scholar 

  54. Contreras Esquivel, J. C., Hours, R. A., Voget, C. E., and Mignone, C. F. (1999) Aspergillus kawachii produces an acidic pectin releasing enzyme activity. J. Biosc. Bioeng. 88, 48–52.

    Google Scholar 

  55. McComb, E. A. and McCready, R. M. (1952) Colorimetric determination of pectic substances. Anal. Chem. 24, 1630–1632.

    Article  CAS  Google Scholar 

  56. Blumenkrantz, N. and Asboe-Hansen, G. (1973) New method for quantitative determination of uronic acids. Anal. Biochem. 54, 484–489.

    Article  PubMed  CAS  Google Scholar 

  57. Lee, H., Biely, P., Latta, R. K., Barbosa, M. F. S., and Schneider, H. (1986) Utilization of xylan by yeasts and its conversion to ethanol by Pichia stipitis strains. Appl. Environ. Microbiol. 52, 320–324.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Herrera, M.D.V., Toro, M.E., de Figueroa, L.I.C., Vazquez, F. (2004). Extracellular Hydrolytic Enzymes Produced by Phytopathogenic Fungi. In: Walker, J.M., Spencer, J.F.T., Ragout de Spencer, A.L. (eds) Environmental Microbiology. Methods in Biotechnology, vol 16. Humana Press. https://doi.org/10.1385/1-59259-765-3:299

Download citation

  • DOI: https://doi.org/10.1385/1-59259-765-3:299

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-116-5

  • Online ISBN: 978-1-59259-765-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics