Skip to main content

Extracellular Hydrolytic Enzymes Produced by Yeasts

  • Protocol
  • 1494 Accesses

Part of the book series: Methods in Biotechnology ((MIBT,volume 16))

Abstract

Different yeasts are able to utilize different carbon sources, and nutritional selectivity determines yeast species diversity in particular niches. In other words, yeasts exhibit great specialization for habitat (1).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Walker, G. M. (1999) Introduction to yeast, in Yeast Physiology and Biotechnology, John Wiley and Sons Ltd., England, pp. 1–10.

    Google Scholar 

  2. Lachance, M.-A., Phaff, H. J., and Starmer, W. T. (1993) Kluyveromyces basillisporus sp. nov. a yeast from Enony Oak exudate. Int. J. Systematic Bacteriol. 43, 115–119.

    Article  CAS  Google Scholar 

  3. Hatchison, L. J. and Miratsuka, Y. (1994) Some wood inhabiting yeasts of trembling aspen (Populus tremuloides) from Alberta and North Eastern British Columbia. Mycologia 86, 386–391.

    Article  Google Scholar 

  4. Morais, P. B., Martins, M. B., Klaczko, L. B., Mendonça-Hagler, L. C., and Hagler, A. N. (1995) Yeast succession in the Amazon fruit Parahancornia amapa as resource partitioning among Drosophila spp. App. Environ. Microbiol. 61, 4251–4257.

    CAS  Google Scholar 

  5. Blanco, P., Sieiro, C., and Villa, T. G. (1999) Production of pectic enzymes in yeasts. FEMS Microbiol. Lett. 175, 1–9.

    Article  PubMed  CAS  Google Scholar 

  6. Shubakov, A. A., Mikhaleva, N. I., Boev, A. V., and Okunev, O. N. (1994) Formation of xylanase by the yeast Cryptococcus podzolicus. Appl. Biochem. Microbiol. 30, 658–664.

    Google Scholar 

  7. Scorzetti, G., Petrescu, I., Yarrow, D., and Fell, J. W. (2000) Cryptococcus adeliensis sp. nov., a xylanase producing basidiomycetous yeast from Antarctica. Antonie van Leeuwenhoek 77, 153–157.

    Article  PubMed  CAS  Google Scholar 

  8. Schäfer, A., Konrad, R., Kuhnig, T., Kämfer, P., Hertel, H., and König, H. (1996) Hemicellulose-degrading bacteria and yeasts from the termite gut. J. Appl. Bacteriol. 80, 471–478.

    PubMed  Google Scholar 

  9. Lee H., Biely, P., Latta, R. K., Barbosa, M. F., and Schneider, H. (1986) Utilization of xylan by yeasts and its conversion to ethanol by Pichia stipitis strains. Appl. Environ. Microbiol. 52, 320–324.

    PubMed  CAS  Google Scholar 

  10. Basaran, P., Basaran, N., and Hang, Y. D. (2000) Isolation and characterization of Pichia stipitis mutants with enhanced xylanase activity. World J. Microbiol. Biotechnol. 16, 545–550.

    Article  CAS  Google Scholar 

  11. Dobberstein, J. and Emeis, C. C. (1989) β-Xylanase produced by Aureobasidium pullulans CBS 58475. Appl. Microbiol. Biotechnol. 32, 262–268.

    Article  CAS  Google Scholar 

  12. Bastawde, K. B., Puntambekar, U. S., and Gokhale, D. V. (1994) Optimization of cellulase-free xylanase production by a novel yeast strain. J. Ind. Microbiol. 13, 220–224.

    Article  CAS  Google Scholar 

  13. Blanco, P., Sieiro, C., Díaz, A., and Villa, T. G. (1994) Production and partial characterization of an endopolygalacturonase from Saccharomyces cerevisiae. Can. J. Microbiol. 40, 974–977.

    Article  PubMed  CAS  Google Scholar 

  14. Karam, G. A., Lequart, C., and Belarbi, A. (1994) Use of Saccharomyces cerevisiae for the clarification of fruit juices. Biotechnol. Lett. 16, 1329–1334.

    Google Scholar 

  15. Stratilová, E., Breierová, E., Vadkertiová, R., Machová, E., Malavíková, A., and Slaviková, E. (1998) The adaptability of the methylotrophic yeast Candida boidinii on media containing pectic substances. Can. J. Microbiol. 44, 116–120.

    Article  Google Scholar 

  16. Iguchi, K., Hirano, H., Kishida, M., Kawasaki, H., and Sakai, T. (1997) Cloning of a protopectinase gene of Trichosporon penicillatum and its expression in Saccharomyces cerevisiae. Microbiology 143, 1657–1664.

    Article  PubMed  CAS  Google Scholar 

  17. Schwan, R. F. and Rose, A. H. (1994) Polygalacturonase production by Kluyveromyces marxianus effect of medium composition. J. Appl. Bacteriol. 76, 62–67.

    CAS  Google Scholar 

  18. Fellows, P. J. and Worgan, J. T. (1984). An investigation into the pectolytic activity of the yeast Saccharomycopsis fibuligera. Enzyme Microb. Technol. 6, 405–410.

    Article  CAS  Google Scholar 

  19. Charoenchai, C., Fleet, G. H., Henschke, P. A., and Todd, B. E. N. (1997) Screening of non-Saccharomyces wine yeasts for the presence of extracellular hydrolytic enzymes. Australian J. Grape and Wine Research 3, 2–8.

    Article  CAS  Google Scholar 

  20. Fernández, M., Úbeda, J. F., and Briones, A. I. (2000) Typing of non-Saccharomyces yeasts with enzymatic activities of interest in wine-making. Int. J. Food Microbiol. 59, 29–36.

    Article  PubMed  Google Scholar 

  21. Corsetti, A., Rossi, J., and Gobbetti, M. (2001) Interactions between yeasts and bacteria in the smear surface-ripened cheeses. Int. J. Food Microbiol. 69, 1–10.

    Article  PubMed  CAS  Google Scholar 

  22. Petersen, K. M., Møller, P. L., and Jespersen, L. (2001) DNA typing methods for differentiation of Debaryomyces hansenii strains and other yeasts related to surface ripened cheeses. Int. J. Food Microbiol. 69, 11–24.

    Article  PubMed  CAS  Google Scholar 

  23. Esteve-Zarzoso, B., Manzanares, P., Ramon, D., and Querol, A. (1998) The role of non-Saccharomyces yeasts in industrial wine-making. Int. Microbiol. 1, 143–148.

    PubMed  CAS  Google Scholar 

  24. Smacchi, E., Fox, P. F., and Gobbetti, M. (1999) Purification and characterization of two extracellular proteinases from Arthrobacter nicotianae 9458. FEMS Microbiol. Lett. 170, 327–333.

    Article  PubMed  CAS  Google Scholar 

  25. Hube, B., Stehr, F., Bossenz, M., Mazur, A., Kretschmar, M., and Schäfer, W. (2000) Secreted lipases of Candida albicans cloning, characterisation and expression analysis of a new gene family with at least ten members. Arch. Microbiol. 174, 362–374.

    Article  PubMed  CAS  Google Scholar 

  26. van der Maarel, M. J. E. C., van der Veen, B., Uitdehaag, J. C. M., Leemhuis, H., and Dijkhuizen, L. (2002) Properties and applications of starch-converting enzymes of the α-amylase family. J. Biotechnol. 94, 137–155.

    Article  PubMed  Google Scholar 

  27. Pandey, A., Nigam, P., Soccol, C. R., Soccol, V. Y., Singh, D., and Mohan, R. (2000) Advances in microbial amylases. Biotechnol. Appl. Biochem. 31, 135–152.

    Article  PubMed  CAS  Google Scholar 

  28. Kazlauskas, R. J. (1994) Elucidating structure mechanism relationships in lipases. Prospects for predicting and engineering catalytic properties. Trends in Biotechnol. 12, 464–472.

    Article  CAS  Google Scholar 

  29. Mingarro, I., Gonzalez-Navarro, H., and Braco, L. (1996) Trapping of different lipase conformers in water-restricted environments. Biochemistry 35, 9935–9944.

    Article  PubMed  CAS  Google Scholar 

  30. Maheshwari, R., Bharadwaj, G., and Bhat, M. K. (2000) Thermophilic fungi: their physiology and enzymes. Microbiol. Molec. Biol. Rev. 64, 461–488.

    Article  CAS  Google Scholar 

  31. Benjamin, S. and Pandey, A. (1998) Candida rugosa lipase: molecular biology and versatility in biotechnology. Yeast 14, 1069–1087.

    Article  PubMed  CAS  Google Scholar 

  32. Wu, J. C., Zhang, G. F., and He, Z. M. (2001) Enhanced activity of Candida rugosa lipase modified by polyethylene glycol derivatives. Biotechnol. Lett. 23, 211–214.

    Article  CAS  Google Scholar 

  33. Shaw, J. F. and Chang, C. H. (1989) Characterization of three distinct forms of lipolytic enzymes in a commercial Candida lipase preparation. Biotechnol. Lett. 11, 779–784.

    Article  CAS  Google Scholar 

  34. Rua, M. L. and Ballesteros, A. (1994) Rapid purification of two lipase isoenzymes from Candida rugosa. Biotechnol. Tech. 8, 21–26.

    Article  CAS  Google Scholar 

  35. Bertolini, M. C., Schrag, J. D., Cyller, M., Thomas, D. Y., and Vernet, T. (1995) Expression in yeast, characterization and comparison of lipases from Geotrichum candidum. Yeast 11, Spec. Iss. S523.

    Google Scholar 

  36. Rao, M. B., Tanksale, A. M., Ghatge, M. S., and Deshpande, V. V. (1998) Molecular and biotechnological aspects of microbial proteases. Microbiol. Molec. Biol. Rev. 62, 597–635.

    CAS  Google Scholar 

  37. Barett, A. J. (1994) Proteolytic enzymes: serine and cysteine peptidases. Methods Enzymol. 244, 1–15.

    Article  Google Scholar 

  38. Menon, A. S. and Goldberg, A. L. (1987) Protein substrates activate the ATP-dependent protease La by promoting nucleotide binding and release of bound ADP. J. Biol. Chem. 262, 14,929–14,934.

    PubMed  CAS  Google Scholar 

  39. Takahashi, S., Ueda, M., Atomi, H., Beer, H. D., Bornscheuer, U. T., Schmid, R. D., et al. (1998) Extracellular production of active Rhizopus oryzae lipase by Saccharomyces cerevisiae. J. Ferm. Bioeng. 86, 164–168.

    Article  CAS  Google Scholar 

  40. Hari Krishna, S., Manohar, B., Divakar, S., Prapulla, S. G., and Karanth, N. G. (1999) Optimization of isoamylacetate production using immobilized lipase from Rhyzomucor miehei by response surface methodology. Enzyme Microbiol. Tech. 26, 132–137.

    Google Scholar 

  41. Tharaud, C., Ribet, A.-M., Costes, C., and Gaillardin, C. (1992) Secretion of human blood coagulation factor XIIIa by the yeast Yarrowia lipolytica. Gene 121, 111–119.

    Article  PubMed  CAS  Google Scholar 

  42. Ogrydziak, D. M. (1993) Yeast extracellular proteases. Crit. Rev. Biotechnol. 13, 1–55.

    Article  PubMed  CAS  Google Scholar 

  43. Hamsa, P. V. and Chattoo, B. B. (1994) Cloning and growth regulated expression of the gene encoding the hepatitis B virus middle surface antigen in Yarrowia lipolytica. Gene 143, 165–170.

    Article  PubMed  CAS  Google Scholar 

  44. Glover, D. J., McEwen, R. K., Thomas, C. R., and Young, T. W. (1997) pH-regulated expression of the acid and alkaline extracellular proteases of Yarrowia lipolytica. Microbiology 143, 3045–3054.

    Article  PubMed  CAS  Google Scholar 

  45. Hensel, M., Tang, C. M., Arst, H. N., Jr., and Holden, D. W. (1995) Regulation of fungal extracellular proteases and their role in mammalian pathogenesis. Can. J. Bot. 73, 1065–1070.

    Article  Google Scholar 

  46. Pignède, G., Wang, H., Fudalej, F., Gaillardin, C., Seman, M., and Nicaud, J.-M. (2000) Characterization of an extracellular lipase encoded by LIP2 in Yarrowia lipolytica. J. Bacteriol. 182, 2802–2810.

    Article  PubMed  Google Scholar 

  47. Novotny, C., Dolezalova L., Musil P., and Novak M. (1988) The production of lipases by some Candida and Yarrowia yeasts. J. Basic Microbiol. 4, 221–227.

    Article  Google Scholar 

  48. Somogyi, M. (1952) Notes on sugar determination. J. Biol. Chem. 195, 19–23.

    CAS  Google Scholar 

  49. Nelson, N. (1944) A photometric adaptation of the Somogyi method for determination of glucose. J. Biol. Chem. 153, 376–380.

    Google Scholar 

  50. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) Protein measurement with folin phenol reagent. J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  51. Akpan, I., Bankole, M. O., and Adesemowo, A. M. (1999) A rapid plate culture method for screening of amylase producing micro-organisms. Biotechnol. Tech. 13, 411–413.

    Article  CAS  Google Scholar 

  52. Kiran, K. R., Hari Krishna, S., Suresh Babu, C. V., Karanth, N. G., and Divakar, S. (2000) An esterification method for determination of lipase activity. Biotechnol. Lett. 22, 1511–1514.

    Google Scholar 

  53. Lagace, L. S. and Bisson, L. F. (1990) Survey of yeast acid proteases for effectiveness of wine haze reduction. Am. J. Enol. & Vitic. 41, 147–155.

    CAS  Google Scholar 

  54. Bilinsky, C. A., Russell, I., and Stewart, G. G. (1987) Applicability of yeast extracellular proteinases in brewing: physiological and biochemical aspects. Appl. Environ. Microbiol. 53, 495–499.

    Google Scholar 

  55. González, C. F., Fariña, J. I., and Figueroa, L. I. C. (2002) A critical assessment of a viscometric assay for measuring Saccharomycopsis fibuligera α-amylase activity on gelatinised cassava starch. Enzyme Microb. Technol. 30, 169–175.

    Article  Google Scholar 

  56. Nigam, P. and Singh, D. (1995) Enzyme and microbial systems involved in starch processing. Enzyme Microb. Technol. 17, 770–778.

    Article  CAS  Google Scholar 

  57. Bignell, G. R., Bruce, I. J., and Evans, I. H. (2000) Amylolytic enzymes of Lipomyces starkeyi purification and size-determination. Biotechnol. Lett. 22, 1713–1718.

    Article  CAS  Google Scholar 

  58. Bang, M. L., Villiadsen, I., and Sandall, T. (1999) Cloning and characterization of an endo-β-1,3 (4) glucanase and an aspartic protease from Phaffia rhodozyma CBS 6938. Appl. Microbiol. Biotechnol. 51, 215–222.

    Article  PubMed  CAS  Google Scholar 

  59. Hube, B., Turver, C. J., Odds, F. C., Eiffert, H., Boulnois, G. J., Kochel, H., and Ruchel, R. (1991) Sequence of the Candida albicans gene encoding the secretory aspartate protease. J. Med. Vet. Mycol. 29, 129.

    Article  PubMed  CAS  Google Scholar 

  60. Togni, G., Sanglard, D., Falchetto, R., and Monod, M. (1991) Isolation and nucleotide sequence of the extracellular acid protease gene (ACP) from yeast Candida tropicalis. FEBS Lett. 286, 181–185.

    Article  PubMed  CAS  Google Scholar 

  61. Muruyama, S. Y., Takeda, O., Mukai, H., Takesako, K., Sano, E., Kato, I., et al. (1995). Candida albicans aspartic proteinase: cDNA cloning and comparison among strains. Adv. Exp. Med. Biol. 362, 573–576.

    Google Scholar 

  62. de la Casa, R. M., Guisán, J. M., Sánchez-Montero, J. M., and Sinisterra, J. V. (2002) Modification of the activities of two different lipases from Candida rugosa with dextrans. Enzyme Microb. Technol. 30, 30–40.

    Article  Google Scholar 

  63. Rubio, C., Latxague, L., Déléris, G., and Coulon, D. (2001) Enzymatic hydrolysis of (chloromethyldimethylsilyl)-2-propenyl acetate isomers: atypic specificity of Candida antarctica lipase. J. Biotechnol. 92, 61–66.

    Article  PubMed  CAS  Google Scholar 

  64. Shelley, A. W., Deeth, H. C., and MacRey, I. C. (1987) Review of methods of enumeration, detection and isolation of lipolytic microorganisms with special reference to dairy applications. J. Microbiol. Meth. 6, 123–137.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Vazquez, F., Vallejo Herrera, M.D., de Figueroa, L.I.C., Toro, M.E. (2004). Extracellular Hydrolytic Enzymes Produced by Yeasts. In: Walker, J.M., Spencer, J.F.T., Ragout de Spencer, A.L. (eds) Environmental Microbiology. Methods in Biotechnology, vol 16. Humana Press. https://doi.org/10.1385/1-59259-765-3:283

Download citation

  • DOI: https://doi.org/10.1385/1-59259-765-3:283

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-116-5

  • Online ISBN: 978-1-59259-765-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics