Extracellular Hydrolytic Enzymes Produced by Phytopathogenic Fungi

  • Martha Dina Vallejo Herrera
  • María Eugenia Toro
  • Lucía I. C. de Figueroa
  • Fabio Vazquez
Part of the Methods in Biotechnology book series (MIBT, volume 16)


Plant cell walls give plants shape and support, help to regulate physiological processes including defense responses, and act as physical barriers to pathogen invasion. Most plant pathogens produce an array of enzymes capable of degrading plant cell-wall components (1,2).


Laccase Activity Enzyme Sample Pectin Lyase Pectic Substance Pectic Enzyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Guo, W., González-Candelas, L., and Kolattukudy, P. E. (1995) Cloning of a novel constitutively expressed pectate lyase gene pelB from Fusarium solani f. sp. pisi (Nectria haematococca, Mating Type VI) and characterization of the gene product expressed in Pichia pastoris. J. Bacteriol. 177, 7070–7077.PubMedGoogle Scholar
  2. 2.
    Schäfer, W. (1994) Molecular mechanisms of fungal pathogenicity to plants. Annu. Rev. Phytopathol. 32, 461–477.CrossRefGoogle Scholar
  3. 3.
    Freelove, A. C. J., Bolam, D. N., White, P., Hazlewood, G. P., and Gilbert, H. J. (2001) A novel carbohydrate-binding protein is a component of the plant cell wall-degrading complex of Piromyces equi. J. Biol. Chem. 276, 43,010–43,017.PubMedCrossRefGoogle Scholar
  4. 4.
    Sachslehner, A., Nidetzky, B., Kulbe, K. D., and Haltrich, D. (1998) Induction of mannanase, xylanase, and endoglucanase activities in Sclerotium rolfsii. Appl. Environ. Microbiol. 64, 594–600.PubMedGoogle Scholar
  5. 5.
    Berry, D. R. (1975) The environmental control of the physiology of filamentous fungi, in The Filamentous Fungi (Smith, J. E., Berry, D. R., and Kristiansen, B., eds.), Edward Arnold, London.Google Scholar
  6. 6.
    Acuña-Argüelles, M. E., Gutiérrez-Rojas, M., Viniegra-González, G., and Favela-Torres, E. (1995) Production and properties of three pectinolytic activities produced by Aspergillus niger in submerged and solid-state fermentation. Appl. Microbiol. Biotechnol. 43, 808–814.PubMedCrossRefGoogle Scholar
  7. 7.
    Rogers, L. M., Kim, Y.-K., Guo, W., González-Candelas, L., Li, D., and Kolattukudy, P. E. (2000) Requirement for either a host-or pectin-induced pectate lyase for infection of Pisum sativum by Nectria hematococca. PNAS 97, 9813–9818.PubMedCrossRefGoogle Scholar
  8. 8.
    García-Maceira, F., Di Pietro, A., Huertas-González, M. D., Ruiz-Roldán, M. C., and Roncero, M. I. G. (2001) Molecular characterization of an endopolygalacturonase from Fusarium oxysporum expressed during early stages of infection. Appl. Environ. Microbiol. 67, 2191–2196.PubMedCrossRefGoogle Scholar
  9. 9.
    Di Pietro, A. and Roncero, M. I. G. (1998) Cloning, expression and role in pathogenicity of pg1 encoding the major extracellular endopolygalacturonase of the vascular wilt pathogen Fusarium oxysporum. Mol. Plant-Microbe Interact. 11, 91–98.PubMedCrossRefGoogle Scholar
  10. 10.
    Doss, R. P. (1999) Composition and enzymatic activity of the extracellular matrix secreted by germlings of Botrytis cinerea. Appl. Environ. Microbiol. 65, 404–408.PubMedGoogle Scholar
  11. 11.
    Doss, R. P., Potter, S. W., Soeldner, A. H., Christian, J. K., and Fukunaga, L. E. (1995) Adhesion of germlings of Botrytis cinerea. Appl. Environ. Microbiol. 61, 260–265.PubMedGoogle Scholar
  12. 12.
    Vierheilig, H., Alt, M., Lange, J., Gutrella, M., Wiemken, A., and Boller, T. (1995) Colonization of transgenic tobacco constitutively expressing pathogenesis-related proteins by the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Appl. Environ. Microbiol. 61, 3031–3034.PubMedGoogle Scholar
  13. 13.
    Cervone, F., De Lorenzo, G., Aracri, B., Bellincampi, D., Caprari, C., Clark, A. J., et al. (1996) The role of polygalacturonase, PGIP and pectin oligomers in fungal infection, in Pectins and Pectinases (Visser, J. and Voragen, A. G. J., eds.), Elsevier Science, The Netherlands.Google Scholar
  14. 14.
    Salzman, R. A., Tikhonova, I., Bordelon, B. P., Hasegawa, P. M., and Bressan, R. A. (1998) Coordinate accumulation of antifungal proteins and hexoses constitutes a developmentally controlled defense response during fruit ripening in grape. Plant. Physiol. 117, 465–472.PubMedCrossRefGoogle Scholar
  15. 15.
    Kubicek, C. P., Mach, R. L., Peterbauer, C. K., and Lorito, M. (2001) Trichoderma: from genes to biocontrol. J. Plant Pathol. 83, 11–23.Google Scholar
  16. 16.
    Pere, J., Puolakka, A., Nousiainen, P., and Buchert, J. (2001) Action of purified Trichoderma reesei cellulases on cotton fibers and yarn. J. Biotechnol. 89, 247–255.PubMedCrossRefGoogle Scholar
  17. 17.
    Mach, R. L., Seiboth, B., Myasnikov, A., González, R., Strauss, J., Harkki, A. M., et al. (1995) The bgl1 gene of Trichoderma reesei QM 9414 encodes an extracellular, cellulose-inducible β-glucosidase involved in cellulase induction by sophorose. Mol. Microbiol. 16, 687–697.PubMedCrossRefGoogle Scholar
  18. 18.
    Seiboth, B., Hakola, S., Mach, R. L., Suominen, P. L., and Kubicek, C. P. (1997) Role of four major cellulases in triggering of cellulase gene expression by cellulose in Trichoderma reesei. J. Bacteriol. 179, 5318–5320.PubMedGoogle Scholar
  19. 19.
    Sunna, A. and Antranikian, G.(1997) Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol. 17, 39–67.PubMedCrossRefGoogle Scholar
  20. 20.
    Kulkarni, N., Shendye, A., and Rao, M. (1999) Molecular and biotechnological aspects of xylanases. FEMS Microbiol. Rev. 23, 411–456.PubMedCrossRefGoogle Scholar
  21. 21.
    Sinnot, M. L. (1990) Catalytic mechanisms of enzymic glucosyl transfer. Chem. Rev. 90, 1171–1202.CrossRefGoogle Scholar
  22. 22.
    Kirk, T. K. and Farrell, R. L. (1987) Enzymatic “combustion”: the microbial degradation of lignin. Annu. Rev. Microbiol. 41, 465–505.PubMedCrossRefGoogle Scholar
  23. 23.
    Caramelo, L., Martínez, M. J., and Martínez, A. T. (1999) A search for ligninolytic peroxidases in the fungus Pleurotus eryngii involving α-keto-γ-thiomethylbutyric acid and lignin model dimers. Appl. Environ. Microbiol. 65, 916–922.PubMedGoogle Scholar
  24. 24.
    Xu, F., Kulys, J. J., Duke, K., Li, K., Krikstopaitis, K., Deussen, H. J., et al. (2000) Redox chemistry in laccase catalyzed oxidation of N-hydroxy compounds. Appl. Environ. Microbiol. 66, 2052–2056.PubMedCrossRefGoogle Scholar
  25. 25.
    O’Malley, D. M., Whetton, R., Bao, W., Chen, C. L., and Sederoff, R. R. (1993) The role of laccase in lignification. Plant J. 4, 751–757.CrossRefGoogle Scholar
  26. 26.
    Thurston, C. F. (1994) The structure and function of fungal laccases. Microbiology 140, 19–26.CrossRefGoogle Scholar
  27. 27.
    Slomczynski, D., Nakas, J. P., and Tanenbaum, S. W. (1995) Production and characterization of laccase from Botrytis cinerea. Appl. Environ. Microbiol. 61, 907–912.PubMedGoogle Scholar
  28. 28.
    Saparrat, M. C. N., Martínez, M. J., Tournier, H. A., Cabello, M. N., and Arambarri, A. M. (2001) Production of ligninolytic enzymes by Fusarium solani strains isolated from different substrata. World J. Microbiol. Biotechnol. 16, 799–803.CrossRefGoogle Scholar
  29. 29.
    Sakai, T., Sakamoto, T., Hallaert, J., and Vandamme, E. J. (1993) Pectin, pectinase and protopectinase: production, properties and applications. Adv. Appl. Microbiol. 39, 213–294.PubMedCrossRefGoogle Scholar
  30. 30.
    Rombouts, F. M. and Pilnik, W. (1980) Pectic enzymes, in Microbial Enzymes and Bioconversion (Pilnik, W., ed.), Academic Press, London, UK, pp. 227–282.Google Scholar
  31. 31.
    Lang, C. and Dörnenburg, H. (2000) Perspectives in the biological function and the technological application of polygalacturonases. Appl. Microbiol. Biotechnol. 53, 366–375.PubMedCrossRefGoogle Scholar
  32. 32.
    Sakai, T. and Okushima, M. (1978) Protopectin-solubilizing enzyme from Trichosporon penicillatum. Agric. Biol. Chem. 42, 2427–2429.Google Scholar
  33. 33.
    Sakai, T. and Sakamoto, T. (1990) Purification and some properties of a protopectin-solubilizing enzyme that has potent activity on sugar beet protopectin. Agric. Biol. Chem. 54, 879–889.Google Scholar
  34. 34.
    Brinton, C. S., Wichmann, H. J., Willaman, J. J., Wilson, C. P., and Dore, W. H. (1927) Definitions written by the Committee on Nomenclature of Pectin of the Agriculture-Food Division. J. Am. Chem. Soc. 49, 38–40.Google Scholar
  35. 35.
    Eggert, C., Temp, U., and Eriksson, K.-E. L. (1996) The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus purification and characterization of the laccase. Appl. Environ. Microbiol. 62, 1151–1158.PubMedGoogle Scholar
  36. 36.
    Jung, H.-J. G., Valdez, F. R., Abad, A. R., Blanchette, R. A., and Hatfield, R. D. (1992) Effect of white rot basidiomycetes on chemical composition and in vitro digestibility of oat straw and alfalfa stems. J. Anim. Sci. 70, 1928–1935.PubMedGoogle Scholar
  37. 37.
    Reid, I. D. (1989) Optimization of solid-state fermentation for selective delignification of aspen wood with Phlebia tremellosa. Enzyme Microb. Technol. 11, 786–803.CrossRefGoogle Scholar
  38. 38.
    Martínez, A. T., Camarero, S., Guillén, F., Gutiérrez, A., Muñoz, C., Varela, E., et al. (1994) Progress in biopulping of non-woody materials: chemical, enzymatic and ultrastructural aspects of wheat straw delignification with ligninolytic fungi from the genus Pleurotus. FEMS Microbiol. Rev. 13, 265–274.CrossRefGoogle Scholar
  39. 39.
    Biely, P. (1985) Microbial xylanolytic systems. Trends Biotechnol. 3, 286–290.CrossRefGoogle Scholar
  40. 40.
    Viikari, L., Kantelinen, A., Sundquist, J., and Linko, M. (1994) Xylanases in bleaching: from an idea to the industry. FEMS Microbiol. Rev. 13, 335–350.CrossRefGoogle Scholar
  41. 41.
    Park, J.-W., Park, K., Song, H., and Shin, H. (2002) Saccharification and adsorption characteristics of modified cellulases with hydrophilic/hydrophobic copolymers. J. Biotechnol. 93, 203–208.PubMedCrossRefGoogle Scholar
  42. 42.
    Viesturs, U., Leite, M., Treimanis, A., Eremeeva, T., Apsite, A., Eisimonte, M., et al. (1996) Production of cellulases and xylanases by Trichoderma viride and biological processing of lignocellulose and recycled paper fibers. Appl. Biochem. Biotechnol. 57/58, 349–360.CrossRefGoogle Scholar
  43. 43.
    Saxena, A., Kuhad, R. C., Saxena, R. K., and Gupta, R. (1994) Production and characterization of a xylanase from Cyathus stercoreus. World J. Microbiol. Biotechnol. 10, 293–295.CrossRefGoogle Scholar
  44. 44.
    Jung H., Xu, F., and Li, K. (2002) Purification and characterization of laccase from wood-degrading fungus Trichophyton rubrum LKY-7. Enzym. Microb. Technol. 30, 161–168.CrossRefGoogle Scholar
  45. 45.
    Miller, L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem. 31, 426–428.CrossRefGoogle Scholar
  46. 46.
    Ghose, T. K. (1987) Measurement of cellulase activities. Pure Appl. Chem. 59, 257–268.CrossRefGoogle Scholar
  47. 47.
    Bailey, M. J., Biely, P., and Poutanen, K. (1992) Interlaboratory testing of methods for assay of xylanase activity. J. Biotechnol. 23, 257–270.CrossRefGoogle Scholar
  48. 48.
    Ghose, T. K. and Bisaria, V. S. (1987) Measurement of hemicellulase activities. Part 1: xylanases. Pure Appl. Chem. 59, 1739–1752.CrossRefGoogle Scholar
  49. 49.
    Vares, T., Kalsi, M., and Hatakka, A. (1995) Lignin peroxidases, manganase peroxidase, and other ligninolytic enzymes produced by Phlebia radiata during solidstate fermentation of wheat straw. Appl. Environ. Microbiol. 61, 3515–3520.PubMedGoogle Scholar
  50. 50.
    Machuca, A. and Ferraz, A. (2001) Hydrolytic and oxidative enzymes produced by white-and brown-rot fungi during Eucaliptus grandis decay in solid medium. Enzyme Microb. Technol. 29, 386–391.CrossRefGoogle Scholar
  51. 51.
    Somogyi, M. (1952) Notes on sugar determination. J. Biol. Chem. 195, 19–23.Google Scholar
  52. 52.
    Nelson, N. (1944) A photometric adaptation of the Somogyi method for determination of glucose. J. Biol. Chem. 153, 376–380.Google Scholar
  53. 53.
    Cavallito, S. F., Hours, R. H., and Mignone, C. F. (1997) Quantification of pectin-releasing activity of protopectinase-SE from Geotrichum klebhanii. Biotechnol. Tech. 11, 331–334.CrossRefGoogle Scholar
  54. 54.
    Contreras Esquivel, J. C., Hours, R. A., Voget, C. E., and Mignone, C. F. (1999) Aspergillus kawachii produces an acidic pectin releasing enzyme activity. J. Biosc. Bioeng. 88, 48–52.Google Scholar
  55. 55.
    McComb, E. A. and McCready, R. M. (1952) Colorimetric determination of pectic substances. Anal. Chem. 24, 1630–1632.CrossRefGoogle Scholar
  56. 56.
    Blumenkrantz, N. and Asboe-Hansen, G. (1973) New method for quantitative determination of uronic acids. Anal. Biochem. 54, 484–489.PubMedCrossRefGoogle Scholar
  57. 57.
    Lee, H., Biely, P., Latta, R. K., Barbosa, M. F. S., and Schneider, H. (1986) Utilization of xylan by yeasts and its conversion to ethanol by Pichia stipitis strains. Appl. Environ. Microbiol. 52, 320–324.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Martha Dina Vallejo Herrera
    • 1
  • María Eugenia Toro
    • 1
  • Lucía I. C. de Figueroa
    • 2
    • 3
  • Fabio Vazquez
    • 1
  1. 1.Universidad Nacional de San JuanSan JuanArgentina
  2. 2.Planta Piloto de Procesos Industriales Microbiologicos (PROIMI)-CONICETTucumánArgentina
  3. 3.Facultad de Bioquimica, Quimica y FarmaciaUniversidad Nacional de TucumánTucumánArgentina

Personalised recommendations