Enzymatic Saccharification of Cellulosic Materials

  • Luiz Pereira Ramos
  • José Domingos Fontana
Part of the Methods in Biotechnology book series (MIBT, volume 16)

Abstract

Lignocellulosic materials are renewable resources that can be directly or indirectly used for the production of biomolecules and commodity chemicals (1,2). However, the industrial utilization of these renewable materials has been compromised by factors such as the close association that exists among the three main components of the plant cell wall—cellulose (see Note 1), hemicellulose (see Note 2) and lignin (see Note 3)—and the low efficiency by which lignocellulosic substrates are converted through biological processes such as enzymatic hydrolysis and fermentation.

Keywords

Sugar Vortex Fermentation Starch Foam 

References

  1. 1.
    Parisi, F. (1989) Advances in lignocellulosics hydrolysis and in the utilization of the hydrolysates. In Advances in Biochemical Engineering and Biotechnology, vol. 38 (Fiechter, A., ed.), Springer-Verlag, Berlin, pp. 53–87.Google Scholar
  2. 2.
    Ghosh, P. and Singh, A. (1993) Physicochemical and biological treatments for enzymatic/microbial conversion of lignocellulosic biomass. Adv. Appl. Microbiol. 39, 295–333.CrossRefGoogle Scholar
  3. 3.
    Atalla, R. H. (1988) Structural transformations in cellulose. In Steam Explosion Techniques: Fundamentals and Industrial Applications (Focher, Marzetti, A., and Crescenzi, V., eds.), Gordon and Breach, Philadelphia, pp. 97–120.Google Scholar
  4. 4.
    Fengel, D. and Wegener, G. (1989) Wood: Chemistry, Ultrastructure, Reactions. Walter de Gruyter, Berlin.Google Scholar
  5. 5.
    Wood, T. M. and Garcia-Campayo, V. (1990) Enzymology of cellulose degradation. Biodegradation 1, 147–161.CrossRefGoogle Scholar
  6. 6.
    Ramos, L. P. and Saddler, J. N. (1994) Bioconversion of wood residues: mechanisms involved in pretreating and hydrolyzing lignocellulosic materials. In Enzymatic Conversion of Biomass for Fuels Production (Himmel, M. E., Baker, J. D., and Overend, R. P., eds.), ACS Symposium Series 566, American Chemical Society, Washington, DC, pp. 325–341.CrossRefGoogle Scholar
  7. 7.
    Coughlan, M. P. (1985) The properties of fungal and bacterial cellulases with comment on their production and application. Biotechnol. Gen. Eng. Rew. 3, 39–109.Google Scholar
  8. 8.
    Fan, L. T., Gharpuray, M. M., and Lee, Y. H. (1987) Cellulose Hydrolysis. Springer-Verlag, New York.Google Scholar
  9. 9.
    Saloheimo, M., Nakari-Setälä, T., Tenkanen, M., and Penttilä, M. (1997) DNA cloning of a Trichoderma reesei cellulase and demonstration of endoglucanase activity by expression in yeast. Eur. J. Biochem. 249, 584–591.PubMedCrossRefGoogle Scholar
  10. 10.
    Saloheimo, A., Henrissat, B., Hoffrén, A. M., Teleman, O., and Penttilä, M. (1994) A novel, small endoglucanase gene, EGl5, from Trichoderma reesei isolated by expression in yeast. Molecular Microbiology 13, 219–228.PubMedCrossRefGoogle Scholar
  11. 11.
    Claeyssens, M., Tomme, P., Breher, C. F., and Hehre, E. J. (1990) Stereochemical course of hydrolysis and hydration reactions catalysed by cellobiohydrolases I and II from Trichoderma reesei. FEBS Lett. 263, 89–92.PubMedCrossRefGoogle Scholar
  12. 12.
    Nidetzki, B., Steiner, W., and Claeyssens, M. (1995) Synergistic interaction of cellulases from Trichoderma reesei during cellulose degradation. In Enzymatic Degradation of Insoluble Carbohydrates (Saddler, J. N. and Penner, M. H., eds.), ACS Symposium Series 618, American Chemical Society, Washington, DC, pp. 90–112.CrossRefGoogle Scholar
  13. 13.
    Ramos, L. P., Cotrim, A. R., Silva, F. T., and Chen, C.-L. (1999) Characterization of residual lignin after SO2-catalyzed steam explosion and enzymatic hydrolysis of Eucalyptus viminalis wood chips. J. Agric. Food Chem. 47, 2992–2302.CrossRefGoogle Scholar
  14. 14.
    Chan, M., Breuil, C., Schwald, W., and. Saddler, J. N. (1989) Comparison of methods for quantifying the hydrolytic potential of cellulase enzymes. Appl. Microbiol. Technol. 31, 413–418.Google Scholar
  15. 15.
    Breuil, C., Chan, M., and Saddler, J. N. (1990) Comparison of the hydrolytic activity of commercial cellulase preparations. Appl. Microbiol. Biotechnol. 34, 31–35.CrossRefGoogle Scholar
  16. 16.
    Ramos, L. P., Breuil, C., and Saddler, J. N. (1993) The use of enzyme recycle and the influence of sugar accumulation on cellulose hydrolysis by Trichoderma cellulases. Enzyme Microb. Technol. 15, 19–25.CrossRefGoogle Scholar
  17. 17.
    Holtzapple, M. T., Cognata, M., Shu, Y., and Hendrickson, C. (1990) Inhibition of Trichoderma reesei cellulase by sugars and solvents. Biotechnol. Bioeng. 36, 275–287.PubMedCrossRefGoogle Scholar
  18. 18.
    Breuil, C., Chan, M., Gilbert, M., and Saddler, J. N. (1992) Influence of β-glucosidase on the filter paper activity and hydrolysis of lignocellulosics substrates. Biores. Technol. 39, 139–142.CrossRefGoogle Scholar
  19. 19.
    Tanaka, M., Nakamura, H., Taniguchi, M., Morita, T., Matsuno, R., and Kamikubo, T. (1986) Elucidation of adsorption processes of cellulases during hydrolysis of crystalline cellulose. Appl. Microbiol. Biotechnol. 23, 263–268.CrossRefGoogle Scholar
  20. 20.
    Converse, A. O., Ooshima, H., and Burns, D. S. (1990) Kinetics of enzymatic hydrolysis of lignocellulosic materials based on surface area of cellulose accessible to enzyme and enzyme adsorption on lignin and cellulose. Appl. Biochem. Biotechnol. 24/25, 67–73.CrossRefGoogle Scholar
  21. 21.
    Grethlein, H. E. (1985) The effect of pore distribution on the rate of enzymatic hydrolysis of cellulosic substrates. Bio/Technology 3, 155–160.CrossRefGoogle Scholar
  22. 22.
    Ramos, L. P., Nazhad, M. M., and Saddler, J. N. (1993) The effect of enzymatic hydrolysis on the morphology and fine structure of pretreated cellulose. Enzyme Microb. Technol. 15, 821–831.CrossRefGoogle Scholar
  23. 23.
    Ramos, L. P., Zandoná Filho, A., Deschamps, F. C., and Saddler, J. N. (1999) The effect of Trichoderma cellulase on the fine structure of a bleached softwood kraft pulp. Enzyme Microb. Technol. 24, 371–380.Google Scholar
  24. 24.
    Sinitsyn, A. P., Gusakov, A. V., and Vlasenko, E. Y. (1991) Effect of structural and physico-chemical features of cellulosic substrates on the efficiency of enzymatic hydrolysis. Appl. Biochem. Biotechnol. 30, 43–59.CrossRefGoogle Scholar
  25. 25.
    Ghose, T.K. (1986) Measurement of cellulase activities. Pure Appl. Chem. 59, 257–268.CrossRefGoogle Scholar
  26. 26.
    Chaplin, M. F. and Kennedy, J. F. (1994) Carbohydrates Analysis: A Practical Approach. IRL Press, Oxford, UK.Google Scholar
  27. 27.
    Higuchi, T. (1981) Lignin structure and morphological distribution in plant cell wall. In Lignin Biodegradation: Microbiology, Chemistry, and Potential Applications (Kirk, T. K., Higuchi, T., and Chang, H.-M., eds.), CRC Press, Boca Raton, FL, pp. 1–20.Google Scholar
  28. 28.
    Claeyssens, M. and Aerts, G. (1992) Characterization of cellulolytic activities in commercial Trichoderma reesei preparations: an approach using small, chromogenic substrates. Biores. Technol. 39, 143–146.CrossRefGoogle Scholar
  29. 29.
    Sridosuk, M., Kleman-Leyer, K., Keränen, S., Kirk, T. K., and Teeri, T. (1998) Mode of action on cotton and bacterial cellulose of a homologous endoglucanase-exoglucanase pair from Trichoderma reesei. Eur. J. Biochem. 251, 885–992.CrossRefGoogle Scholar
  30. 30.
    Reinikainen, T., Henriksson, K., Siika-aho, M., Teleman, O., and Poutanen, K. (1995) Low level endoglucanase contamination in a Trichoderma reesei cellobiohydrolase II preparation affects its enzymatic activity on β-glucan. Enzyme Microb. Technol. 17, 888–892.CrossRefGoogle Scholar
  31. 31.
    Thomas, S. R., Laymon, R. A., Chou, Y. C., Tucker, M. P., Vinzant, T. B., Adney, W. S., et al. (1995) Initial approaches to artificial cellulase systems for conversion of biomass to ethanol. In Enzymatic Degradation of Insoluble Carbohydrates (Saddler, J. N. and Penner, M. H., eds.), ACS Symposium Series 618, American Chemical Society, Washington, DC, pp. 208–236.CrossRefGoogle Scholar
  32. 32.
    Cavaco-Paulo, A. (1997) Cellulases in textile processes. In Proceedings of the Fifth Brazilian Symposium on the Chemistry of Lignin and Other Wood Components (Ramos, L. P., ed.), Sepia, Curitiba, PR, Brazil, pp. 404–412.Google Scholar
  33. 33.
    Pommier, J. C., Goma, G., Fuentes, J. L., Rousset, C., and Jokinen, O. (1990) Using enzymes to improve the process and product quality in the recycled paper industry. Part II. Industrial applications. Tappi J. 73, 197–202.Google Scholar
  34. 34.
    Pere, J., Siika-aho, M., Buchert, J., and Viikari, L. (1995) Effects of purified Trichoderma reesei cellulases on the fiber properties of kraft pulp. Tappi J. 6, 71–78.Google Scholar
  35. 35.
    Mansfield, S. D., Wong, K. K. Y., Jong, E., and Saddler, J. N. (1996) Modification of douglas-fir mechanical and kraft pulps by enzyme treatment. Tappi J. 79, 125–132.Google Scholar
  36. 36.
    Schwald, W., Chan, M., Breuil, C., and Saddler, J. N. (1988) Comparison of HPLC and colorimetric methods for measuring cellulolytic activity. Appl. Microbiol. Biotechnol. 28, 398–403.CrossRefGoogle Scholar
  37. 37.
    Larsson, S., Palmqvist, E., Hahn-Hägerdahl, B., Tengborg, C., Sternberg, K., Zacchi, G., et al. (1999) The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb. Technol. 24, 151–159.CrossRefGoogle Scholar
  38. 38.
    Boussaid, A., Robinson, J., Cai, Y., Gregg, D. J., Saddler, J. N., and Cai, Y. G. (1999) Fermentability of the hemicellulose derived sugars from steam-exploded softwood (Douglas-fir). Biotechnol. Bioeng. 64, 284–289.PubMedCrossRefGoogle Scholar
  39. 39.
    Dekker, R. F. H. (1988) Inhibition of Trichoderma reesei β-glucosidase activity derived from autohydrolysis-exploded Eucalyptus regnans. Appl. Microbiol. Biotechnol. 29, 593–598.CrossRefGoogle Scholar
  40. 40.
    Sinitsyn, A. P., Clesceri, L. S., and Bungay, H. R. (1982) Inhibition of cellulases by impurities in steam-exploded wood. Appl. Biochem. Biotechnol. 7, 455–458.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Luiz Pereira Ramos
    • 1
  • José Domingos Fontana
    • 2
  1. 1.Departamento de QuímicaUniversidade Federal de ParanáCuritibaBrasil
  2. 2.Biomass Chemo/Biotechnology Laboratory, Department of PharmacyFederal University of ParanáCuritiba-PRBrazil

Personalised recommendations