Bench Scale Flow Cell for Nondestructive Imaging of Biofilms

  • Eric S. Gilbert
  • Jay D. Keasling
Part of the Methods in Biotechnology book series (MIBT, volume 16)

Abstract

Microbial biofilms impact economically important processes ranging from water treatment to nosocomial infections. Understanding their ecology is a key step in learning how to manipulate them. A feature that changed scientists’ understanding of microbial biofilms was the discovery of their three-dimensional heterogeneous structure, which occurred primarily with the advent of the confocal laser scanning microscope (CLSM) (1). It was recognized that handling attached populations of cells prior to imaging would distort their structure, principally owing to shear forces at the air-liquid interface tearing the biofilm (2). Consequently, flow cells that facilitated nondestructive imaging of biofilms were developed by several groups.

Keywords

Peroxide Epoxy Syringe Nitrile Aeration 

References

  1. 1.
    Lawrence, J. R., Korber, D. R., Hoyle, B. D., Costerton, J. W., and Caldwell, D. E. (1991) Optical sectioning of microbial biofilms. J. Bacteriol. 173, 6558–6567.PubMedGoogle Scholar
  2. 2.
    Busscher, H. J. and van der Mei, H. C. (1995) Use of flow chamber devices and image analysis methods to study microbial adhesion, in Adhesion of Microbial Pathogens (Doyle, R. J. and Ofek, I., eds.), Academic Press, New York, NY, pp. 455–477.CrossRefGoogle Scholar
  3. 3.
    Davies, D. G. and Geesey, G. G. (1995) Regulation of the alginate biosynthesis gene algC in Pseudomonas aeruginosa during biofilm development in continuous culture. Appl. Environ. Microbiol. 61, 860–867.PubMedGoogle Scholar
  4. 4.
    Kuehn, M., Hausner, M., Bungartz, H. J., Wagner, M., Wilderer, P. A., and Wuertz, S. (1998) Automated confocal laser scanning microscopy and semiautomated image processing for analysis of biofilms. Appl. Environ. Microbiol. 64, 4115–4127.PubMedGoogle Scholar
  5. 5.
    Parsek, M. R. and Greenberg, E. P. (1999) Quorum sensing signals in development of Pseudomonas aeruginosa biofilms, in Biofilms (Doyle, R. J., ed.), Academic Press, New York, NY, pp. 43–55.CrossRefGoogle Scholar
  6. 6.
    Kolenbrander, P. E., Andersen, R. N., Kazmerzak, K., Wu, R., and Palmer, R. J., Jr. (1999) Spatial organization of oral bacteria in biofilms, in Biofilms (Doyle, R. J., ed.), Academic Press, New York, NY, pp. 322–332.CrossRefGoogle Scholar
  7. 7.
    Christensen, B. B., Sternberg, C., Andersen, J. B., Palmer, R. J., Jr., Nielsen, A. T., Givskov, M., et al. (1999) Molecular tools for study of biofilm physiology. Methods Enzymol. 310, 20–42.PubMedCrossRefGoogle Scholar
  8. 8.
    Cowan, S. E., Gilbert, E., Khlebnikov, A., and Keasling, J. D. (2000) Dual labeling with green fluorescent proteins for confocal microscopy. Appl. Environ. Microbiol. 66, 413–418.PubMedCrossRefGoogle Scholar
  9. 9.
    Bloemberg, G. V., Wijfjes, A. H., Lamers, G. E., Stuurman, N., and Lugtenberg, B. J. (2000) Simultaneous imaging of Pseudomonas fluorescens WCS365 populations expressing three different autofluorescent proteins in the rhizosphere: new perspectives for studying microbial communities. Mol. Plant Microbe Interact. 13, 1170–1176.PubMedCrossRefGoogle Scholar
  10. 10.
    Tolker-Nielsen, T. and Molin, S. (2000) Spatial organization of microbial biofilm communities. Microb. Ecol. 40, 75–84.PubMedGoogle Scholar
  11. 11.
    Cowan, S. E., Gilbert, E., Liepmann, D., and Keasling, J. D. (2000) Commensal interactions in a dual-species biofilm exposed to mixed organic compounds. Appl. Environ. Microbiol. 66, 4481–4485.PubMedCrossRefGoogle Scholar
  12. 12.
    Palmer, R. J., Jr., Kazmerzak, K., Hansen, M. C., and Kolenbrander, P. E. (2001) Mutualism versus independence: strategies of mixed-species oral biofilms in vitro using saliva as the sole nutrient source. Infect. Immun. 69, 5794–5804.PubMedCrossRefGoogle Scholar
  13. 13.
    Guggenheim, M., Shapiro, S., Gmur, R., and Guggenheim, B. (2001) Spatial arrangements and associative behavior of species in an in vitro oral biofilm model. Appl. Environ. Microbiol. 67, 1343–1350.PubMedCrossRefGoogle Scholar
  14. 14.
    Daims, H., Nielsen, J. L., Nielsen, P. H., Schleifer, K. H., and Wagner, M. (2001) In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants. Appl. Environ. Microbiol. 67, 5273–5284.PubMedCrossRefGoogle Scholar
  15. 15.
    Moller, S., Sternberg, C., Andersen, J. B., Christensen, B. B., Ramos, J. L., Givskov, M., et al. (1998) In situ gene expression in mixed-culture biofilms: evidence of metabolic interactions between community members. Appl. Environ. Microbiol. 64, 721–732.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Eric S. Gilbert
    • 1
  • Jay D. Keasling
    • 2
  1. 1.Department of BiologyGeorgia State UniversityAtlanta
  2. 2.Department of Chemical EngineeringUniversity of California BerkeleyBerkeley

Personalised recommendations