Advertisement

Microarrays for Bacterial Typing

Realistic Hope or Holy Grail?
  • Carola Van Ijperen
  • Nicholas A. Saunders
Part of the Methods in Molecular Biology™ book series (MIMB, volume 266)

Abstract

Microbiology has entered the postgenomic era and it is clear that bacterial typing should aim to be based on analysis of complete genomes. Although complete genome sequencing for epidemiological typing remains unrealistic for the present, microarrays that provide information on gene content are now becoming available. Microarrays comprised of several thousand probes on glass slides can now be manufactured in the laboratory using robotic arrayers. The gene probes are either PCR products or synthetic oligonucleotides that can be irreversibly attached to a reactive glass surface. The target nucleic acids to be hybridized to the probe array are tagged with fluorescent dyes. Relative probe hybridization signals can be measured when two or more different preparations are labeled with distinguishable fluorophores. Microarrays that include probes for every gene within a genome provide excellent comparative data, although a focus on variable genes may be more useful for typing purposes. Composite arrays of variable genes are under development.

Key Words

Bacterial typing microarray probe hybridization comparative genomics genetic diversity 

References

  1. 1.
    Baba, T., Takeuchi, F., Kuroda, M., Yuzawa, H., Aoki, K., Oguchi, A., et al. (2002) Genome and virulence determinants of high virulence community-acquired MRSA. Lancet 359, 1819–1827.PubMedCrossRefGoogle Scholar
  2. 2.
    Lucchini, S., Thompson, A., and Hinton, J. C. D. (2001) Microarrays for microbiologists. Microbiol. 147, 1403–1414.Google Scholar
  3. 3.
    Dorrell, N., Mangan, J. A., Laing, K. G., Hinds, J., Linton, D., Al-Ghusein, H., et al. (2001) Whole genome comparison of Campylobacter jejuni human isolates using a low-cost microarray reveals extensive genetic diversity. Genome Res. 11, 1706–1715.PubMedCrossRefGoogle Scholar
  4. 4.
    Dziejman, M., Balon, E., Boyd, D., Fraser, C. M., Heidelberg, J. F., and Mekalanos J. J. (2002) Comparative genomic analysis of Vibrio cholerae: genes that correlate with cholera endemic and pandemic disease. Proc. Natl. Acad. Sci. USA 99, 1556–1561.PubMedCrossRefGoogle Scholar
  5. 5.
    Smoot, J. C., Barbian, K. D., Van Gompel, J. J., Smoot, L. M., Chaussee, M. S., Sylva, G. L., et al. (2002) Genome sequence and comparative microarray analysis of serotype M18 group A Streptococcus strains associated with acute rheumatic fever outbreaks. Proc. Natl. Acad. Sci. USA 99, 4668–4673.PubMedCrossRefGoogle Scholar
  6. 6.
    Relógio, A., Schwager, C., Richter, A., Ansorge, W., and Valcárcel, J. (2002) Optimization of oligonucleotide-based DNA microarrays. Nucl. Acids Res. 30, e51.PubMedCrossRefGoogle Scholar
  7. 7.
    Rozen, S. and Skaletsky, H. J. (1996–1998) Primer3. Code available at http://www-genome.wi.mit.edu/genome-software/other/primer3.html
  8. 8.
    Rouillard, J-M., Herbert, C. J., and Zuker, M. (2002) OligoArray: genome-scale oligonucleotide design for microarrays. Bioinformatics 18, 486–487.PubMedCrossRefGoogle Scholar
  9. 9.
    Salama, N., Guillemin, K., McDaniel, T. K., Sherlock, G., Tompkins, L., and Falkow, S. (2000) A whole-genome microarray reveals genetic diversity among Helicobacter pylori strains. Proc. Natl. Acad. Sci. USA 97, 14,668–14,673.PubMedCrossRefGoogle Scholar
  10. 10.
    Behr, M. A., Wilson, M. A., Gill, W. P., Salamon, H., Schoolnik, G. K., Rane, S., et al. (1999) Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science 284, 1520–1523.PubMedCrossRefGoogle Scholar
  11. 11.
    Fitzgerald, J. R., Sturdevant, D. E., Mackie, S. M., Gill, S. R., and Musser, J. M. (2001) Evolutionary genomics of Staphylococcus aureus: insights into the origin of methicillin-resistant strains and the toxic shock syndrome epidemic. Proc. Natl. Acad. Sci. USA 98, 8821–8826.PubMedCrossRefGoogle Scholar
  12. 12.
    Van Ijperen, C., Kuhnert, P., Frey, J., and Clewley, J. P. (2002). Virulence typing of Escherichia coli using microarrays. Mol. Cell Probes 16, 371–378.PubMedCrossRefGoogle Scholar
  13. 13.
    Hu, H., Lan, R., and Reeves, P. R. (2002) Fluorescent amplified fragment length polymorphism analysis of Salmonella enterica serovar Typhimurium reveals phage-type-specific markers and potential for microarray typing. J. Clin. Microbiol. 40, 3406–3415.PubMedCrossRefGoogle Scholar
  14. 14.
    Kane, M. D., Jatkoe, T. A., Stumpf, C. R., Lu, J., Thomas, J. D., and Madore, S. J. (2000). Assessment of the sensitivity and specificity of oligonucleotide (50mer) microarrays. Nucl. Acids Res. 28, 4552–4557.PubMedCrossRefGoogle Scholar
  15. 15.
    Massimi, A., Harris, T., Childs, G., and Somerville, S. (2003) DNA Microarray: A Molecular Cloning Manual. (Bowtell, D. and Sambrook, J., eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, New York. p. 78.Google Scholar
  16. 16.
    Watson, A., Mazumder, A., Stewart, M., and Balasubramanian, S. (1998) Technology for microarray analysis of gene expression. Curr. Opin. Biotechnol. 9, 609–614.PubMedCrossRefGoogle Scholar
  17. 17.
    Chizhikov, V., Rasooly, A., Chumakov, K., and Levy, D. D. (2001) Microarray analysis of microbial virulence factors. Appl. Environ. Microbiol. 67, 3258–3263.PubMedCrossRefGoogle Scholar
  18. 18.
    Kuroda, M., Ohta, T., Uchiyama, I., Baba, T., Yuzawa, H., Kobayashi, I., et al. (2001) Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet 357, 1225–1240.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Carola Van Ijperen
    • 1
  • Nicholas A. Saunders
    • 2
  1. 1.Sexually Transmitted and Bloodborne Virus Laboratory, Specialist and Reference Microbiology DivisionHealth Protection Agency-ColindaleLondonUK
  2. 2.Genomics, Proteomics, and Bioinformatics Unit, Specialist and Reference Microbiology DivisionHealth Protection Agency-ColindaleLondonUK

Personalised recommendations