Advertisement

Transformation of Monomorphic and Pleomorphic Trypanosoma brucei

  • Richard McCulloch
  • Erik Vassella
  • Peter Burton
  • Michael Boshart
  • J. David Barry
Part of the Methods in Molecular Biology™ book series (MIMB, volume 262)

Abstract

African trypanosomes, such as Trypanosoma brucei, are protozoan parasites of mammals that were first described over 100 hundred years ago. They have long been the subjects of biological investigation, which has yielded insights into a number of fundamental, as well as novel, cellular processes in all organisms. In the last decade or so, genetic manipulation of trypanosomes has become possible through DNA transformation, allowing yet more detailed analysis of the biology of the parasite. One facet of this is that DNA transformation has itself been used as an assay for recombination and will undoubtedly lead to further genetic approaches to examine this process. Here we describe protocols for DNA transformation of Trypanosoma brucei, including two different life cycle stages and two different strain types that are distinguished by morphological and developmental criteria. We consider the application of transformation to recombination, as well as the uses of transforming the different life cycle stages and strain types.

Key Words

trypanosome Trypanosoma brucei parasite transformation recombination VSG antigenic variation 

References

  1. 1.
    Li, F., Hua, S. B., Wang, C. C., and Gottesdiener, K. M. (1996) Procyclic Trypanosoma brucei cell lines deficient in ornithine decarboxylase activity. Mol. Biochem. Parasitol. 78, 227–236.PubMedGoogle Scholar
  2. 2.
    Sommer, J. M., Hua, S., Li, F., Gottesdiener, K. M., and Wang, C. C. (1996) Cloning by functional complementation in Trypanosoma brucei. Mol. Biochem. Parasitol. 76, 83–89.PubMedGoogle Scholar
  3. 3.
    Wirtz, E., Leal, S., Ochatt, C., and Cross, G. A. (1999) A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei. Mol. Biochem. Parasitol. 99, 89–101.PubMedGoogle Scholar
  4. 4.
    Ngo, H., Tschudi, C., Gull, K., and Ullu, E. (1998) Double-stranded RNA induces mRNA degradation in Trypanosoma brucei. Proc. Natl. Acad. Sci. USA 95, 14,687–14,692.PubMedGoogle Scholar
  5. 5.
    Wirtz, E. and Clayton, C. (1995) Inducible gene expression in trypanosomes mediated by a prokaryotic repressor. Science 268, 1179–1183.PubMedGoogle Scholar
  6. 6.
    Ulbert, S., Cross, M., Boorstein, R. J., Teebor, G. W., and Borst, P. (2002) Expression of the human DNA glycosylase hSMUG1 in Trypanosoma brucei causes DNA damage and interferes with biosynthesis. Nucleic Acids Res. 30, 3919–3926.PubMedGoogle Scholar
  7. 7.
    Barry, J. D. and McCulloch, R. (2001) Antigenic variation in trypanosomes: enhanced phenotypic variation in a eukaryotic parasite. Adv. Parasitol. 49, 1–70.PubMedGoogle Scholar
  8. 8.
    Gray, M. A., Ross, C. A., Taylor, A. M., and Luckins, A. G. (1984) In vitro cultivation of Trypanosoma congolense: the production of infective metacyclic trypanosomes in cultures initiated from cloned stocks. Acta Trop. 41, 343–353.PubMedGoogle Scholar
  9. 9.
    Ross, C. A., Gray, M. A., Taylor, A. M., and Luckins, A. G. (1985) In vitro cultivation of Trypanosoma congolense: establishment of infective mammalian forms in continuous culture after isolation from the blood of infected mice. Acta Trop. 42, 113–122.PubMedGoogle Scholar
  10. 10.
    Downey, N. and Donelson, J. E. (1999) Expression of foreign proteins in Trypanosoma congolense. Mol. Biochem. Parasitol. 104, 39–53.PubMedGoogle Scholar
  11. 11.
    Inoue, N., Otsu, K., Ferraro, D. M., and Donelson, J. E. (2002) Tetracyclineregulated RNA interference in Trypanosoma congolense. Mol. Biochem. Parasitol. 120, 309–313.PubMedGoogle Scholar
  12. 12.
    Zomerdijk, J. C., Ouellette, M., Ten Asbroek, A. L., et al. (1990) The promoter for a variant surface glycoprotein gene expression site in Trypanosoma brucei. EMBO J. 9, 2791–2801.PubMedGoogle Scholar
  13. 13.
    Clayton, C. E., Fueri, J. P., Itzhaki, J. E., et al. (1990) Transcription of the procyclic acidic repetitive protein genes of Trypanosoma brucei. Mol. Cell Biol. 10, 3036–3047.PubMedGoogle Scholar
  14. 14.
    Rudenko, G., Le Blancq, S., Smith, J., Lee, M. G., Rattray, A., and Van der Ploeg, L. H. (1990) Procyclic acidic repetitive protein (PARP) genes located in an unusually small alpha-amanitin-resistant transcription unit: PARP promoter activity assayed by transient DNA transfection of Trypanosoma brucei. Mol. Cell Biol. 10, 3492–3504.PubMedGoogle Scholar
  15. 15.
    Clayton, C. E. (1999) Genetic manipulation of kinetoplastida. Parasitol. Today 15, 372–378.PubMedGoogle Scholar
  16. 16.
    Ginger, M. L., Blundell, P. A., Lewis, A. M., Browitt, A., Gunzl, A., and Barry, J. D. (2002) Ex vivo and in vitro identification of a consensus promoter for VSG genes expressed by metacyclic-stage trypanosomes in the tsetse fly. Eukaryot. Cell 1, 1000–1009.PubMedGoogle Scholar
  17. 17.
    Beverley, S. M. (2003) Protozomics: trypanosomatid parasite genetics comes of age. Nat. Rev. Genet. 4, 11–19.PubMedGoogle Scholar
  18. 18.
    Ten Asbroek, A. L., Ouellette, M., and Borst, P. (1990) Targeted insertion of the neomycin phosphotransferase gene into the tubulin gene cluster of Trypanosoma brucei. Nature 348, 174–175.PubMedGoogle Scholar
  19. 19.
    Ten Asbroek, A. L., Mol, C. A., Kieft, R., and Borst, P. (1993) Stable transformation of Trypanosoma brucei. Mol. Biochem. Parasitol. 59, 133–142.PubMedGoogle Scholar
  20. 20.
    Patnaik, P. K., Kulkarni, S. K., and Cross, G. A. (1993) Autonomously replicating single-copy episomes in Trypanosoma brucei show unusual stability. EMBO J. 12, 2529–2538.PubMedGoogle Scholar
  21. 21.
    Metzenberg, S. and Agabian, N. (1994) Mitochondrial minicircle DNA supports plasmid replication and maintenance in nuclei of Trypanosoma brucei. Proc. Natl. Acad. Sci. USA 91, 5962–5966.PubMedGoogle Scholar
  22. 22.
    Nagamune, K., Nozaki, T., Maeda, Y., et al. (2000) Critical roles of glycosylphosphatidylinositol for Trypanosoma brucei. Proc. Natl. Acad. Sci. USA 97, 10,336–10,341.PubMedGoogle Scholar
  23. 23.
    Lee, M. G. (1995) A foreign transcription unit in the inactivated VSG gene expression site of the procyclic form of Trypanosoma brucei and formation of large episomes in stably transformed trypanosomes. Mol. Biochem. Parasitol. 69, 223–238.PubMedGoogle Scholar
  24. 24.
    Patnaik, P. K., Axelrod, N., Van der Ploeg, L. H., and Cross, G. A. (1996) Artificial linear mini-chromosomes for Trypanosoma brucei. Nucleic Acids Res. 24, 668–675.PubMedGoogle Scholar
  25. 25.
    Alsford, N. S., Navarro, M., Jamnadass, H. R., et al. (2003) The identification of circular extrachromosomal DNA in the nuclear genome of Trypanosoma brucei. Mol. Microbiol. 47, 277–289.PubMedGoogle Scholar
  26. 26.
    McCulloch, R. and Barry, J. D. (1999) A role for RAD51 and homologous recombination in Trypanosoma brucei antigenic variation. Genes Dev. 13, 2875–2888.PubMedGoogle Scholar
  27. 27.
    Chaves, I., Rudenko, G., Dirks-Mulder, A., Cross, M., and Borst, P. (1999) Control of variant surface glycoprotein gene-expression sites in Trypanosoma brucei. EMBO J. 18, 4846–4855.PubMedGoogle Scholar
  28. 28.
    Berriman, M., Hall, N., Sheader, K., et al. (2002) The architecture of variant surface glycoprotein gene expression sites in Trypanosoma brucei. Mol. Biochem. Parasitol. 122, 131–140.PubMedGoogle Scholar
  29. 29.
    Wickstead, B., Ersfeld, K., and Gull, K. (2002) Targeting of a tetracycline-inducible expression system to the transcriptionally silent minichromosomes of Trypanosoma brucei. Mol. Biochem. Parasitol. 125, 211–216.PubMedGoogle Scholar
  30. 30.
    Ersfeld, K., Melville, S. E., and Gull, K. (1999) Nuclear and genome organization of Trypanosoma brucei. Parasitol. Today 15, 58–63.PubMedGoogle Scholar
  31. 31.
    Melville, S. E., Leech, V., Gerrard, C. S., Tait, A., and Blackwell, J. M. (1998) The molecular karyotype of the megabase chromosomes of Trypanosoma brucei and the assignment of chromosome markers. Mol. Biochem. Parasitol. 94, 155–173.PubMedGoogle Scholar
  32. 32.
    Rudenko, G., Blundell, P. A., Dirks-Mulder, A., Kieft, R., and Borst, P. (1995) A ribosomal DNA promoter replacing the promoter of a telomeric VSG gene expression site can be efficiently switched on and off in T. brucei. Cell 83, 547–553.PubMedGoogle Scholar
  33. 33.
    McCulloch, R., Rudenko, G., and Borst, P. (1997) Gene conversions mediating antigenic variation in Trypanosoma brucei can occur in variant surface glycoprotein expression sites lacking 70-base-pair repeat sequences. Mol. Cell Biol. 17, 833–843.PubMedGoogle Scholar
  34. 34.
    Horn, D. and Cross, G. A. (1997) Analysis of Trypanosoma brucei vsg expression site switching in vitro. Mol. Biochem. Parasitol. 84, 189–201.PubMedGoogle Scholar
  35. 35.
    Horn, D. and Cross, G. A. (1997) Position-dependent and promoter-specific regulation of gene expression in Trypanosoma brucei. EMBO J. 16, 7422–7431.PubMedGoogle Scholar
  36. 36.
    Wirtz, E., Hartmann, C., and Clayton, C. (1994) Gene expression mediated by bacteriophage T3 and T7 RNA polymerases in transgenic trypanosomes. Nucleic Acids Res. 22, 3887–3894.PubMedGoogle Scholar
  37. 37.
    Paques, F. and Haber, J. E. (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 63, 349–404.PubMedGoogle Scholar
  38. 38.
    Symington, L. S. (2002) Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol. Mol. Biol. Rev. 66, 630–670, table.PubMedGoogle Scholar
  39. 39.
    Rudenko, G., Blundell, P. A., Taylor, M. C., Kieft, R., and Borst, P. (1994) VSG gene expression site control in insect form Trypanosoma brucei. EMBO J. 13, 5470–5482.PubMedGoogle Scholar
  40. 40.
    Wirtz, E., Hoek, M., and Cross, G. A. (1998) Regulated processive transcription of chromatin by T7 RNA polymerase in Trypanosoma brucei. Nucleic Acids Res. 26, 4626–4634.PubMedGoogle Scholar
  41. 41.
    Leung, W., Malkova, A., and Haber, J. E. (1997) Gene targeting by linear duplex DNA frequently occurs by assimilation of a single strand that is subject to preferential mismatch correction. Proc. Natl. Acad. Sci. USA 94, 6851–6856.PubMedGoogle Scholar
  42. 42.
    Cruz, A. K., Titus, R., and Beverley, S. M. (1993) Plasticity in chromosome number and testing of essential genes in Leishmania by targeting. Proc. Natl. Acad. Sci. USA 90, 1599–1603.PubMedGoogle Scholar
  43. 43.
    Mottram, J. C., McCready, B. P., Brown, K. G., and Grant, K. M. (1996) Gene disruptions indicate an essential function for the LmmCRK1 cdc2-related kinase of Leishmania mexicana. Mol. Microbiol. 22, 573–583.PubMedGoogle Scholar
  44. 44.
    Tovar, J., Wilkinson, S., Mottram, J. C., and Fairlamb, A. H. (1998) Evidence that trypanothione reductase is an essential enzyme in Leishmania by targeted replacement of the tryA gene locus. Mol. Microbiol. 29, 653–660.PubMedGoogle Scholar
  45. 45.
    Valdes, J., Taylor, M. C., Cross, M. A., Ligtenberg, M. J., Rudenko, G., and Borst, P. (1996) The viral thymidine kinase gene as a tool for the study of mutagenesis in Trypanosoma brucei. Nucleic Acids Res. 24, 1809–1815.PubMedGoogle Scholar
  46. 46.
    Ha, D. S., Schwarz, J. K., Turco, S. J., and Beverley, S. M. (1996) Use of the green fluorescent protein as a marker in transfected Leishmania. Mol. Biochem. Parasitol. 77, 57–64.PubMedGoogle Scholar
  47. 47.
    Das, A. and Bellofatto, V. (2003) RNA polymerase II-dependent transcription in trypanosomes is associated with a SNAP complex-like transcription factor. Proc. Natl. Acad. Sci. USA 100, 80–85.PubMedGoogle Scholar
  48. 48.
    Gilinger, G. and Bellofatto, V. (2001) Trypanosome spliced leader RNA genes contain the first identified RNA polymerase II gene promoter in these organisms. Nucleic Acids Res. 29, 1556–1564.PubMedGoogle Scholar
  49. 49.
    Papadopoulou, B. and Dumas, C. (1997) Parameters controlling the rate of gene targeting frequency in the protozoan parasite Leishmania. Nucleic Acids Res. 25, 4278–4286.PubMedGoogle Scholar
  50. 50.
    Blundell, P. A., Rudenko, G., and Borst, P. (1996) Targeting of exogenous DNA into Trypanosoma brucei requires a high degree of homology between donor and target DNA. Mol. Biochem. Parasitol. 76, 215–229.PubMedGoogle Scholar
  51. 51.
    Shen, S., Arhin, G. K., Ullu, E., and Tschudi, C. (2001) In vivo epitope tagging of Trypanosoma brucei genes using a one step PCR-based strategy. Mol. Biochem. Parasitol. 113, 171–173.PubMedGoogle Scholar
  52. 52.
    Gaud, A., Carrington, M., Deshusses, J., and Schaller, D. R. (1997) Polymerase chain reaction-based gene disruption in Trypanosoma brucei. Mol. Biochem. Parasitol. 87, 113–115.PubMedGoogle Scholar
  53. 53.
    Conway, C., Proudfoot, C., Burton, P., Barry, J. D., and McCulloch, R. (2002) Two pathways of homologous recombination in Trypanosoma brucei. Mol. Microbiol. 45, 1687–1700.PubMedGoogle Scholar
  54. 54.
    Krawchuk, M. D. and Wahls, W. P. (1999) High-efficiency gene targeting in Schizosaccharomyces pombe using a modular, PCR-based approach with long tracts of flanking homology. Yeast 15, 1419–1427.PubMedGoogle Scholar
  55. 55.
    Lee, M. G. and Van der Ploeg, L. H. (1990) Homologous recombination and stable transfection in the parasitic protozoan Trypanosoma brucei. Science 250, 1583–1587.PubMedGoogle Scholar
  56. 56.
    Eid, J. and Sollner-Webb, B. (1991) Stable integrative transformation of Trypanosoma brucei that occurs exclusively by homologous recombination. Proc. Natl. Acad. Sci. USA 88, 2118–2121.PubMedGoogle Scholar
  57. 57.
    Melville, S. E., Leech, V., Navarro, M., and Cross, G. A. (2000) The molecular karyotype of the megabase chromosomes of Trypanosoma brucei stock 427. Mol. Biochem. Parasitol. 111, 261–273.PubMedGoogle Scholar
  58. 58.
    Matthews, K. R. and Gull, K. (1994) Evidence for an interplay between cell cycle progression and the initiation of differentiation between life cycle forms of African trypanosomes. J. Cell Biol. 125, 1147–1156.PubMedGoogle Scholar
  59. 59.
    Blundell, P. A., van Leeuwen, F., Brun, R., and Borst, P. (1998) Changes in expression site control and DNA modification in Trypanosoma brucei during differentiation of the bloodstream form to the procyclic form. Mol. Biochem. Parasitol. 93, 115–130.PubMedGoogle Scholar
  60. 60.
    Muller, I. B., Domenicali-Pfister, D., Roditi, I., and Vassella, E. (2002) Stage-specific requirement of a mitogen-activated protein kinase by Trypanosoma brucei. Mol. Biol. Cell 13, 3787–3799.PubMedGoogle Scholar
  61. 61.
    Reuner, B., Vassella, E., Yutzy, B., and Boshart, M. (1997) Cell density triggers slender to stumpy differentiation of Trypanosoma brucei bloodstream forms in culture. Mol. Biochem. Parasitol. 90, 269–280.PubMedGoogle Scholar
  62. 62.
    Vassella, E., Reuner, B., Yutzy, B., and Boshart, M. (1997) Differentiation of African trypanosomes is controlled by a density sensing mechanism which signals cell cycle arrest via the cAMP pathway. J. Cell Sci. 110, 2661–2671.PubMedGoogle Scholar
  63. 63.
    Matthews, K. R. (1999) Developments in the differentiation of Trypanosoma brucei. Parasitol. Today 15, 76–80.PubMedGoogle Scholar
  64. 64.
    Hendriks, E., van Deursen, F. J., Wilson, J., Sarkar, M., Timms, M., and Matthews, K. R. (2000) Life-cycle differentiation in Trypanosoma brucei: molecules and mutants. Biochem. Soc. Trans. 28, 531–536.PubMedGoogle Scholar
  65. 65.
    Vassella, E., Den Abbeele, J. V., Butikofer, P., et al. (2000) A major surface glycoprotein of Trypanosoma brucei is expressed transiently during development and can be regulated post-transcriptionally by glycerol or hypoxia. Genes Dev. 14, 615–626.PubMedGoogle Scholar
  66. 66.
    Butikofer, P., Vassella, E., Boschung, M., et al. (2002) Glycosylphospha-tidylinositol-anchored surface molecules of Trypanosoma congolense insect forms are developmentally regulated in the tsetse fly. Mol. Biochem. Parasitol. 119, 7–16.PubMedGoogle Scholar
  67. 67.
    Butikofer, P., Vassella, E., Mehlert, A., Ferguson, M. A., and Roditi, I. (2002) Characterisation and cellular localisation of a GPEET procyclin precursor in Trypanosoma brucei insect forms. Mol. Biochem. Parasitol. 119, 87–95.PubMedGoogle Scholar
  68. 68.
    Robinson, N. P., Burman, N., Melville, S. E., and Barry, J. D. (1999) Predominance of duplicative VSG gene conversion in antigenic variation in African trypanosomes. Mol. Cell Biol. 19, 5839–5846.PubMedGoogle Scholar
  69. 69.
    Borst, P. and Cross, G. A. (1982) Molecular basis for trypanosome antigenic variation. Cell 29, 291–303.PubMedGoogle Scholar
  70. 70.
    Cross, G. A., Wirtz, L. E., and Navarro, M. (1998) Regulation of vsg expression site transcription and switching in Trypanosoma brucei. Mol. Biochem. Parasitol. 91, 77–91.PubMedGoogle Scholar
  71. 71.
    Vanhamme, L., Pays, E., McCulloch, R., and Barry, J. D. (2001) An update on antigenic variation in African trypanosomes. Trends Parasitol. 17, 338–343.PubMedGoogle Scholar
  72. 72.
    Borst, P. (2002) Antigenic variation and allelic exclusion. Cell 109, 5–8.PubMedGoogle Scholar
  73. 73.
    Vassella, E. and Boshart, M. (1996) High molecular mass agarose matrix supports growth of bloodstream forms of pleomorphic Trypanosoma brucei strains in axenic culture. Mol. Biochem. Parasitol. 82, 91–105.PubMedGoogle Scholar
  74. 74.
    Vassella, E., Kramer, R., Turner, C. M., et al. (2001) Deletion of a novel protein kinase with PX and FYVE-related domains increases the rate of differentiation of Trypanosoma brucei. Mol. Microbiol. 41, 33–46.PubMedGoogle Scholar
  75. 75.
    Brun, R. and Schonenberger, M. (1981) Stimulating effect of citrate and cis-Aconitate on the transformation of Trypanosoma brucei bloodstream forms to procyclic forms in vitro. Z. Parasitenkd. 66, 17–24.PubMedGoogle Scholar
  76. 76.
    Ziegelbauer, K., Quinten, M., Schwarz, H., Pearson, T. W., and Overath, P. (1990) Synchronous differentiation of Trypanosoma brucei from bloodstream to procyclic forms in vitro. Eur. J. Biochem. 192, 373–378.PubMedGoogle Scholar
  77. 77.
    Overath, P., Czichos, J., and Haas, C. (1986) The effect of citrate/cis-aconitate on oxidative metabolism during transformation of Trypanosoma brucei. Eur. J. Biochem. 160, 175–182.PubMedGoogle Scholar
  78. 78.
    Overath, P., Czichos, J., Stock, U., and Nonnengaesser, C. (1983) Repression of glycoprotein synthesis and release of surface coat during transformation of Trypanosoma brucei. EMBO J. 2, 1721–1728.PubMedGoogle Scholar
  79. 79.
    Vassella, E., Acosta-Serrano, A., Studer, E., Lee, S. H., Englund, P. T., and Roditi, I. (2001) Multiple procyclin isoforms are expressed differentially during the development of insect forms of Trypanosoma brucei. J. Mol. Biol. 312, 597–607.PubMedGoogle Scholar
  80. 80.
    Tyler, K. M., Matthews, K. R., and Gull, K. (1997) The bloodstream differentiation-division of Trypanosoma brucei studied using mitochondrial markers. Proc. R. Soc. Lond B Biol. Sci. 264, 1481–1490.Google Scholar
  81. 81.
    Vassella, E., Straesser, K., and Boshart, M. (1997) A mitochondrion-specific dye for multicolour fluorescent imaging of Trypanosoma brucei. Mol. Biochem. Parasitol. 90, 381–385.PubMedGoogle Scholar
  82. 82.
    Roditi, I., Schwarz, H., Pearson, T. W., et al. (1989) Procyclin gene expression and loss of the variant surface glycoprotein during differentiation of Trypanosoma brucei. J. Cell Biol. 108, 737–746.PubMedGoogle Scholar
  83. 83.
    Hirumi, H. and Hirumi, K. (1989) Continuous cultivation of Trypanosoma brucei blood stream forms in a medium containing a low concentration of serum protein without feeder cell layers. J. Parasitol. 75, 985–989.PubMedGoogle Scholar
  84. 84.
    Carruthers, V. B. and Cross, G. A. (1992) High-efficiency clonal growth of bloodstream-and insect-form Trypanosoma brucei on agarose plates. Proc. Natl. Acad. Sci. USA 89, 8818–8821.PubMedGoogle Scholar
  85. 85.
    Conway, C., McCulloch, R., Ginger, M. L., Robinson, N. P., Browitt, A., and Barry, J. D. (2002) Ku is important for telomere maintenance, but not for differential expression of telomeric VSG genes, in African trypanosomes. J. Biol. Chem. 277, 21,269–21,277.PubMedGoogle Scholar
  86. 86.
    Robinson, N. P., McCulloch, R., Conway, C., Browitt, A., and Barry, J. D. (2002) Inactivation of Mre11 does not affect VSG gene duplication mediated by homologous recombination in Trypanosoma brucei. J. Biol. Chem. 277, 26,185–26,193.PubMedGoogle Scholar
  87. 87.
    Brun, R. and Schonenberger (1979) Cultivation and in vitro cloning or procyclic culture forms of Trypanosoma brucei in a semi-defined medium. Short communication. Acta Trop. 36, 289–292.PubMedGoogle Scholar
  88. 88.
    Cunningham, I. (1977) New culture medium for maintenance of tsetse tissues and growth of trypanosomatids. J. Protozool. 24, 325–329.PubMedGoogle Scholar
  89. 89.
    Bingle, L. E., Eastlake, J. L., Bailey, M., and Gibson, W. C. (2001) A novel GFP approach for the analysis of genetic exchange in trypanosomes allowing the in situ detection of mating events. Microbiology 147, 3231–3240.PubMedGoogle Scholar
  90. 90.
    Van Den Hoff, M. J., Moorman, A. F., and Lamers, W. H. (1992) Electroporation in ‘intracellular’ buffer increases cell survival. Nucleic Acids Res. 20, 2902.PubMedGoogle Scholar
  91. 91.
    Nathan, H. C., Bacchi, C. J., Sakai, T. T., Rescigno, D., Stumpf, D., and Hutner, S. H. (1981) Bleomycin-induced life prolongation of mice infected with Trypanosoma brucei brucei EATRO 110. Trans. R. Soc. Trop. Med. Hyg. 75, 394–398.PubMedGoogle Scholar
  92. 92.
    Jefferies, D., Tebabi, P., Le Ray, D., and Pays, E. (1993) The ble resistance gene as a new selectable marker for Trypanosoma brucei: fly transmission of stable procyclic transformants to produce antibiotic resistant bloodstream forms. Nucleic Acids Res. 21, 191–195.PubMedGoogle Scholar
  93. 93.
    Murphy, N. B., Muthiani, A. M., and Peregrine, A. S. (1993) Use of an in vivo system to determine the G418 resistance phenotype of bloodstream-form Trypanosoma brucei brucei transfectants. Antimicrob. Agents Chemother. 37, 1167–1170.PubMedGoogle Scholar
  94. 94.
    van Gent, D. C., Hoeijmakers, J. H., and Kanaar, R. (2001) Chromosomal stability and the DNA double-stranded break connection. Nat. Rev. Genet. 2, 196–206.PubMedGoogle Scholar
  95. 95.
    Cox, M. M. (2001) Recombinational DNA repair of damaged replication forks in Escherichia coli: questions. Annu. Rev. Genet. 35, 53–82.PubMedGoogle Scholar
  96. 96.
    Masson, J. Y. and West, S. C. (2001) The Rad51 and Dmc1 recombinases: a non-identical twin relationship. Trends Biochem. Sci. 26, 131–136.PubMedGoogle Scholar
  97. 97.
    Sogin, M. L., Hinkle, G., and Leipe, D. D. (1993) Universal tree of life. Nature 362, 795.PubMedGoogle Scholar
  98. 98.
    Tan, K. S., Leal, S. T., and Cross, G. A. (2002) Trypanosoma brucei MRE11 is non-essential but influences growth, homologous recombination and DNA double-strand break repair. Mol. Biochem. Parasitol. 125, 11–21.PubMedGoogle Scholar
  99. 99.
    Lovett, S. T., Hurley, R. L., Sutera, V. A., Jr., Aubuchon, R. H., and Lebedeva, M. A. (2002) Crossing over between regions of limited homology in Escherichia coli. RecA-dependent and RecA-independent pathways. Genetics 160, 851–859.PubMedGoogle Scholar
  100. 100.
    Ira, G. and Haber, J. E. (2002) Characterization of RAD51-independent break-induced replication that acts preferentially with short homologous sequences. Mol. Cell Biol. 22, 6384–6392.PubMedGoogle Scholar
  101. 101.
    Barnes, D. E. (2001) Non-homologous end joining as a mechanism of DNA repair. Curr. Biol. 11, R455–R457.PubMedGoogle Scholar
  102. 102.
    Critchlow, S. E. and Jackson, S. P. (1998) DNA end-joining: from yeast to man. Trends Biochem. Sci. 23, 394–398.PubMedGoogle Scholar
  103. 103.
    D’Amours, D. and Jackson, S. P. (2002) The Mre11 complex: at the crossroads of DNA repair and checkpoint signalling. Nat. Rev. Mol. Cell Biol. 3, 317–327.PubMedGoogle Scholar
  104. 104.
    Morris, J. C., Wang, Z., Drew, M. E., and Englund, P. T. (2002) Glycolysis modulates trypanosome glycoprotein expression as revealed by an RNAi library. EMBO J. 21, 4429–4438.PubMedGoogle Scholar
  105. 105.
    Panigrahi, A. K., Schnaufer, A., Ernst, N. L., Wang, B., Carmean, N., Salavati, R., and Stuart, K. (2003) Identification of novel components of Trypanosoma brucei editosomes. RNA 9, 484–492.PubMedGoogle Scholar
  106. 106.
    Aphasizhev, R., Aphasizheva, I., Nelson, R. E., et al. (2003) Isolation of a U-insertion/deletion editing complex from Leishmania tarentolae mitochondria. EMBO J. 22, 913–924.PubMedGoogle Scholar
  107. 107.
    Lee, M. G. and Van der Ploeg, L. H. (1991) The hygromycin B-resistance-encoding gene as a selectable marker for stable transformation of Trypanosoma brucei. Gene 105, 255–257.PubMedGoogle Scholar
  108. 108.
    Lorenz, P. Maier, A. G., Baumgart, E., Erdmann, R., and Clayton, C. (1998) Elongation and clustering of glycosomes in Trypanosoma brucei overexpressing the glycosomal Pex11p. EMBO J. 17, 3542–3555.PubMedGoogle Scholar
  109. 109.
    Brooks, D. R., McCulloch, R., Coombs, G. H., and Mottram, J. C. (2000) Stable transformation of trypanosomatids through targeted chromosomal integration of the selectable marker gene encoding blasticidin S deaminase. FEMS Microbiol. Lett. 186, 287–291.PubMedGoogle Scholar
  110. 110.
    Ruepp, S., Furger, A., Kurath, U., et al. (1997) Survival of Trypanosoma brucei in the tsetse fly is enhanced by the expression of specific forms of procyclin. J. Cell Biol. 137, 1369–1379.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Richard McCulloch
    • 1
  • Erik Vassella
    • 2
  • Peter Burton
    • 1
  • Michael Boshart
    • 3
  • J. David Barry
    • 1
  1. 1.Welcome Centre for Molecular ParasitologyUniversity of GlasgowGlasgowUK
  2. 2.Institute of Cell BiologyUniversity of BernBernSwitzerland
  3. 3.Department of Biology IUniversity of MunichMunichGermany

Personalised recommendations