Skip to main content

Quantitative Analysis of PRAME for Detection of Minimal Residual Disease in Leukemia

  • Protocol
Molecular Diagnosis of Cancer

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 97))

Abstract

Preferentially expressed antigen of melanoma (PRAME) was first isolated using cDNA expression cloning techniques as a gene encoding a human melanoma antigen recognized by melanoma reactive cytotoxic T-cells (CTL) (1). This gene codes for a 509-amino-acid protein whose function has not yet been identified. PRAME is expressed in various types of cancer, including melanoma (97%), sarcoma (80%), small-cell lung cancer (70%), renal cell carcinoma (40%), and head and neck cancer (29%) (1,2). PRAME is also found in limited normal tissues, including endometrium and adrenal glands, and found highly expressed in testis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ikeda, H., Lethe, B., Lehmann, F., et al. (1997) Characterization of an antigen that is recognized on a melanoma showing partial HLA loss by CTL expressing an NK inhibitory receptor. Immunity 6, 199–208.

    Article  PubMed  CAS  Google Scholar 

  2. Neumann, E., Engelsberg, A., Decker, J., et al. (1998) Heterogeneous expression of the tumor-associated antigens RAGE-1, PRAME, and glycoprotein 75 in human renal cell carcinoma: candidates for T-cell-based immunotherapies? Cancer Res. 58, 4090–4095.

    PubMed  CAS  Google Scholar 

  3. Matsushita, M., Ikeda, H., Kizaki, M., et al. (2001) Quantitative monitoring of the PRAME gene for the detection of minimal residual disease in leukemia. Br. J. Haematol. 112, 916–926.

    Article  PubMed  CAS  Google Scholar 

  4. van Baren, N., Brasseur, F., Godelaine, D., et al. (1999) Genes encoding tumor-specific antigens are expressed in human myeloma cells. Blood 94, 1156–1164.

    PubMed  Google Scholar 

  5. Kessler, J. H., Beekman, N. J., Bres-Vloemans, S. A., et al. (2001) Efficient identification of novel HLA-A(*)0201-presented cytotoxic T lymphocyte epitopes in the widely expressed tumor antigen PRAME by proteasome-mediated digestion analysis. J. Exp. Med. 193, 73–88.

    Article  PubMed  CAS  Google Scholar 

  6. Lin, F., van Rhee, F., Goldman, J. M., et al. (1996) Kinetics of increasing BCR-ABL transcript numbers in chronic myeloid leukemia patients who relapse after bone marrow transplantation. Blood 87, 4473–4478.

    PubMed  CAS  Google Scholar 

  7. Lion, T., Gaiger, A., Henn, T., et al. (1995) Use of quantitative polymerase chain reaction to monitor residual disease in chronic myelogenous leukemia during treatment with interferon. Leukemia 9, 1353–1360.

    PubMed  CAS  Google Scholar 

  8. Muto, A., Mori, S., Matsushita, H., et al. (1996) Serial quantification of minimal residual disease of t(8;21) acute myelogenous leukemia with RT-competitive PCR assay. Br. J. Haematol. 95, 85–94.

    Article  PubMed  CAS  Google Scholar 

  9. Roberts, W. M., Estrov, Z., Ouspenskaia, M. V., et al. (1997) Measurement of residual leukemia during remission in childhood acute lymphoblastic leukemia. N. Engl. J. Med. 336, 317–323.

    Article  PubMed  CAS  Google Scholar 

  10. Seriu, T., Hansen-Hagge, T. E., Erz, D. H., et al. (1995) Improved detection of minimal residual leukemia through modifications of polymerase chain reaction analyses based on clonospecific T cell receptor junctions. Leukemia 9, 316–320.

    PubMed  CAS  Google Scholar 

  11. Inoue, K., Ogawa, H., Yamagami, T., et al. (1996) Long-term follow-up of minimal residual disease in leukemia patients by monitoring WT1 (Wilms tumor gene) expression levels. Blood 88, 2267–2278.

    PubMed  CAS  Google Scholar 

  12. Mensink, E., van de Locht, A., Schattenberg, A., et al. (1998) Quantitation of minimal residual disease in Philadelphia chromosome positive chronic myeloid leukemia patients using real-time quantitative RT-PCR. Br. J. Haematol. 102, 768–774.

    Article  PubMed  CAS  Google Scholar 

  13. Dolken, G. (2001) Detection of minimal residual disease. Adv. Cancer Res. 82, 133–185.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Matsushita, M., Yamazaki, R., Kawakami, Y. (2004). Quantitative Analysis of PRAME for Detection of Minimal Residual Disease in Leukemia. In: Roulston, J.E., Bartlett, J.M.S. (eds) Molecular Diagnosis of Cancer. Methods in Molecular Medicine, vol 97. Humana Press. https://doi.org/10.1385/1-59259-760-2:267

Download citation

  • DOI: https://doi.org/10.1385/1-59259-760-2:267

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-160-8

  • Online ISBN: 978-1-59259-760-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics