Skip to main content

Molecular Characterization of Human Papillomaviruses by PCR and In Situ Hybridization

  • Protocol
  • 790 Accesses

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 97))

Abstract

The goal of early detection and screening is the diagnosis and treatment of cancer before it spreads beyond the organ of origin, perhaps even in its preinvasive state. Unfortunately, available early detection and screening techniques pick up many tumors at a relatively late stage in their natural history. As a result, decrements in mortality even with the best available detection modalities are likely to be modest. On the other hand, some early detection and screening techniques identify changes with a low probability of progression to life-threatening cancer, thereby resulting in unnecessary diagnosis and overtreatment. New technologies coming from the field of molecular and cellular biology are able to identify genetic as well as antigenic changes during the early stages of malignant progression. Some of these changes show promise as biomarkers for preneoplastic development or for malignant transformation.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. American Cancer Society. (1999) Cancer Facts & Figures—1999, American Cancer Society, Washington, DC.

    Google Scholar 

  2. Munger, K. (2002) The role of human papillomaviruses in human cancers. Front. Biosci. 7, d641–d649

    Article  PubMed  Google Scholar 

  3. Reeves, W. C, Rawls, W. E., and Brinton, L. A. (1989) Epidemiology of genital papillomaviruses and cervical cancer. Rev. Infect. Dis. 11, 426–439.

    Article  PubMed  CAS  Google Scholar 

  4. Muñoz, N., Bosch, F. X., de Sanjosé, S., et al. (1992) The causal link between human papillomavirus and invasive cervical cancer: a population-based case-control study in Columbia and Spain. Int. J. Cancer 52, 743–749.

    Article  PubMed  Google Scholar 

  5. Schiffman, M. H., Bauer, H. M., Hoover, R. N., et al. (1993) Epidemiologic evidence showing that human papillomavirus infection causes most cervical intraepithelial neoplasia. J. Natl. Cancer Inst. 85, 958–964.

    Article  PubMed  CAS  Google Scholar 

  6. Eluf-Neto, J., Booth, M., Muñoz, N., et al. (1994) Human papillomavirus and invasive cervical cancer in Brazil. Br. J. Cancer 69, 114–119.

    Article  PubMed  CAS  Google Scholar 

  7. Dyson, N., Howley, P. M., Münger, K., et al. (1989) The human papillomavirus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243, 934–947.

    Article  PubMed  CAS  Google Scholar 

  8. Scheffner, M., Werness, B. A., Huibregtse, J. M., et al. (1990) The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63, 1129–1136.

    Article  PubMed  CAS  Google Scholar 

  9. Werness, B. A., Levine, A. J., and Howley, P. M. (1990) Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 248, 76–79.

    Article  PubMed  CAS  Google Scholar 

  10. Gao, Q., Srinivasan, S., Boyer, S. N., et al. (1999) The E6 oncoproteins of high-risk papillomaviruses bind to a novel putative GAP protein, E6TP1, and target for degradation. Mol. Cell. Biol 19, 733–744.

    PubMed  CAS  Google Scholar 

  11. Pirisi, L., Creek, K. E., Doniger, J., et al. (1988) Continuous cell lines with altered growth and differentiation properties originate after transfection of human keratino-cytes with human papillomavirus type 16 DNA. Carcinogenesis 9, 1573–1579.

    Article  PubMed  CAS  Google Scholar 

  12. Woodworth, C. D., Bowden, P. E., Doniger, J., et al. (1988) Characterization of normal human exocervical cell immortalized in vitro by papillomavirus types 16 and 18 DNA. Cancer Res. 48, 4620–4628.

    PubMed  CAS  Google Scholar 

  13. Halbert, C. L., Demers, G. W., and Galloway, D. A. (1991) The E7 gene of human papillomavirus type 16 is sufficient for immortalization of human epithelial cells. J. Virol. 65, 473–478.

    PubMed  CAS  Google Scholar 

  14. Griep, A. E., Herber, R., Jeon, S., et al. (1993) Tumorigenicity by human papillomavirus type 16 E6 and E7 in transgenic mice correlates with alterations in epithelial cell growth and differentiation. J. Virol. 67, 1373–1384.

    PubMed  CAS  Google Scholar 

  15. Arbeit, J. M., Munger, K., Howley, P. M., et al. (1994) Progressive squamous epithelial neoplasia in K14-human papillomavirus type 16 transgenic mice. J. Virol. 68, 4358–4368.

    PubMed  CAS  Google Scholar 

  16. Herber, R., Liem, A., Pitot, H., et al. (1996) Squamous epithelial hyperplasia and carcinoma in mice transgenic for the human papillomavirus type 16 E7 oncogene. J. Virol. 70, 1873–1881.

    PubMed  CAS  Google Scholar 

  17. Stoler, M. H., Rhodes, C. R., Whitbeck, A., et al. (1992) Human papillomavirus type 16 and 18 gene expression in cervical neoplasia. Hum. Pathol. 23, 117–128.

    Article  PubMed  CAS  Google Scholar 

  18. Unger, E. R., Vernon, S. D., Lee, D. R., et al. (1998) Detection of human papillomavirus in archival tissues: comparison of in situ hybridization and polymerase chain reaction. J. Histochem. Cytochem. 46, 535.

    PubMed  CAS  Google Scholar 

  19. Ferenczy, A. and Franco, E. (2002) Persistent human papillomavirus infection and cervical neoplasia [review]. Lancet Oncol. 3, 11–16.

    Article  PubMed  CAS  Google Scholar 

  20. Lorenzato, F. R., Singer, A., Ho, L., et al. (2002) Human papillomavirus detection for cervical cancer prevention with polymerase chain reaction in self-collected samples. Am. J. Obstet. Gynecol. 186, 962–968.

    Article  PubMed  Google Scholar 

  21. Dimulescu, I., Unger, E. R., Lee, D. R., et al. (1998) Characterization of RNA in cytologic samples preserved in a methanol based collection medium. Mol. Diagn. 3, 1–7.

    Article  Google Scholar 

  22. Xi, L. F., Carter, J. J., Galloway, D. A., et al. (2002) Acquisition and natural history of human papillomavirus type 16 variant infection among a cohort of female university students. Cancer Epidemiol. Biomarkers Prev. 11, 343–351.

    PubMed  Google Scholar 

  23. Ting, Y. and Manos M. (1990) Detection and typing of genital human papillomaviruses, in PCR Protocols: A Guide to Methods and Applications (Innis, M. A., Gelfand, D. H., Sninsky, J. J., and White, T. J., eds.), Academic, New York, pp. 356–367.

    Google Scholar 

  24. Gravitt, P. E., Peyton, C. L., Alessi, T. Q., et al. (2000) Improved amplification of genital human papillomaviruses. J. Clin. Microbiol. 38, 357–361.

    PubMed  CAS  Google Scholar 

  25. de Roda Husman, A. M., Walboomers, J. M., Meijer, C. J., et al. (1994) Analysis of cytomorphologically abnormal cervical scrapes for the presence of 27 mucosotropic human papillomavirus genotypes, using polymerase chain reaction. Int. J. Cancer 56, 802–806.

    Article  PubMed  Google Scholar 

  26. Kleter, B., van Doorn, L. J., ter Schegget, J., et al. (1998) A novel short-fragment PCR assay for highly sensitive broad-spectrum detection of anogenital human papillomaviruses. Am. J. Pathol. 153, 1731–1739.

    Article  PubMed  CAS  Google Scholar 

  27. Tucker, R. A., Johnson, P. R., Reeves, W. C., et al. (1993) Using the polymerase chain reaction to genotype human papillomavirus DNAs in samples containing multiple HPVs may produce inaccurate results. J. Virol. Methods 43, 321–333.

    Article  PubMed  CAS  Google Scholar 

  28. Vernon, S. D., Unger, E. R., and Williams, D. (2000) Comparison of human papillomavirus detection and typing by cycle sequencing, line blot and hybrid capture. J. Clin. Microbiol. 38, 651–655.

    PubMed  CAS  Google Scholar 

  29. Coutlee, F., Gravitt, P., Kornegay, J., et al. (2002) Use of PGMY primers in L1 consensus PCR improves detection of human papillomavirus DNA in genital samples. J. Clin. Microbiol. 40, 902–907.

    Article  PubMed  CAS  Google Scholar 

  30. Jacobs, M. V., de Roda Husman, A. M., van den Brule, A. J., et al. (1995) Group-specific differentiation between high-and low-risk human papillomavirus genotypes by general primer-mediated PCR and two cocktails of oligonucleotide probes. J. Clin. Microbiol. 33, 901–905.

    PubMed  CAS  Google Scholar 

  31. van den Brule, A. J., Pol, R., Fransen-Daalmeijer, N., et al. (2002) GP5+/6+ PCR followed by reverse line blot analysis enables rapid and high-throughput identification of human papillomavirus genotypes. J. Clin. Microbiol. 40, 779–787.

    Article  PubMed  Google Scholar 

  32. Kleter, B., van Doorn, L. J., Schrauwen, L., et al. (1999) Development and clinical evaluation of a highly sensitive PCR-reverse hybridization line probe assay for detection and identification of anogenital human papillomavirus. J. Clin. Microbiol. 37, 2508–2517.

    PubMed  CAS  Google Scholar 

  33. Gravitt, P. E., Peyton, C. L., Apple, R. J., et al. (1998) Genotyping of 27 human papillomavirus types by using L1 consensus PCR products by a single-hybridization, reverse line blot detection method. J. Clin. Microbiol. 36, 3020–3027.

    PubMed  CAS  Google Scholar 

  34. van Doorn, L. J., Quint, W., Kleter, B., et al. (2002) Genotyping of human papillomavirus in liquid cytology cervical specimens by the PGMY line blot assay and the SPF(10) line probe assay. J. Clin. Microbiol. 40, 979–983.

    Article  PubMed  Google Scholar 

  35. Kerstens, H. M. J., Poddighe, P. J., and Hanselaar, A. G. J. M. (1995) A novel in situ hybridization method based on the deposition of biotinylated tyramide. J. Histochem. Cytochem. 43, 347.

    PubMed  CAS  Google Scholar 

  36. Plummer, T. B., Sperry, A. C., Xu, H. S., et al. (1998) In situ hybridization detection of low copy nucleic acid sequences using catalyzed reporter deposition and its usefulness in clinical human papillomavirus typing. Diagn. Mol. Pathol. 7, 76.

    Article  PubMed  CAS  Google Scholar 

  37. Sano, T., Hikino, T., Niwa, Y., et al. (1998) In situ hybridization with biotinylated tyramide amplification: detection of human papillomavirus DNA in cervical neo-plastic lesions. Mod. Pathol. 11, 19.

    PubMed  CAS  Google Scholar 

  38. Cheung, A. L. M., Graf, A.-H., Hauser-Kronberger, et al. (1999) Detection of human papillomavirus in cervical carcinoma: comparison of peroxidase, nanogold, and catalyzed reported deposition (CARD)-nanogold in situ hybridization. Mod. Pathol. 12, 689.

    PubMed  CAS  Google Scholar 

  39. Unger, E. R., Hammer, M. L., and Chenggis, M. L. (1991) Comparison of 35S and biotin as labels for in situ hybridization: use of an HPV model system. J. Histochem. Cytochem. 39, 145.

    PubMed  CAS  Google Scholar 

  40. Unger, E. R., Vernon, S. D., Hewan-Lowe, K. O., et al. (1999) An unusual cervical carcinoma showing exception to epitheliotropism of human papillomavirus. Hum. Pathol. 30, 483.

    Article  PubMed  CAS  Google Scholar 

  41. Unger, E. R., Vernon, S. D., Lee, D. R., et al. (1997) Human papillomavirus type in anal epithelial lesions is influenced by human immunodeficiency virus. Arch. Pathol. Lab. Med. 121, 820.

    PubMed  CAS  Google Scholar 

  42. Unger, E. R., Vernon, S. D., Thoms, W. W., et al. (1995) Human papillomavirus and disease-free survival in FIGO stage Ib cervical cancer. J. Infect. Dis. 172, 1184–1190.

    PubMed  CAS  Google Scholar 

  43. Southern, S. A., Graham, D. A., and Herrington, C. S. (1998) Discrimination of human papillomavirus types in low and high grade cervical squamous neoplasia. Diagn. Mol. Pathol. 7, 114.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Vernon, S.D., Unger, E.R. (2004). Molecular Characterization of Human Papillomaviruses by PCR and In Situ Hybridization. In: Roulston, J.E., Bartlett, J.M.S. (eds) Molecular Diagnosis of Cancer. Methods in Molecular Medicine, vol 97. Humana Press. https://doi.org/10.1385/1-59259-760-2:159

Download citation

  • DOI: https://doi.org/10.1385/1-59259-760-2:159

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-160-8

  • Online ISBN: 978-1-59259-760-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics