Detection of K-ras Mutations by a Microelectronic DNA Chip

  • Evelyne Lopez-Crapez
  • Thierry Livache
  • Patrice Caillat
  • Daniela Zsoldos
Part of the Methods in Molecular Medicine book series (MIMM, volume 97)


The increased knowledge of the human genome, thanks to its sequencing and to the accumulation of data that ensue from it, prompts the characterization of disease-causing genes. Especially because of the continuing expansion of cancer-related gene discovery, oncobiology is a discipline that is undergoing rapid change. Detection of point mutations in oncogenes or tumor suppressor genes associated with the multistep process of oncogenesis could be of value in patient management. These potential molecular tumor markers are essential not only for the diagnosis, prognosis, or the follow-up of the disease but also for the management of therapy (1,2). Particularly, the K-ras protooncogene is altered, by point mutations within codons estimated to be critical for the biological activity of the protein (codons 12, 13, or 61), in a wide variety of tumors (3). The incidence of these mutations can reach 95% in pancreatic carcinoma (4) and occurs in 40–60% of colorectal cancers, where they are associated with the progression from adenoma to carcinoma (5). The detection of K-ras mutations enables the understanding of cancer biology and pathogenesis with, for example, a role in the mucinous differentiation pathway (6). Alterations involving this oncogene may be of clinical importance because they can provide information for early diagnosis and clinical outcome. Their analysis within the tumor makes them of prognostic value (risk of relapse, mortality) (7). Moreover, activation of the K-ras gene has been detected not only in the tumor but also in the stools (8) of patients with colorectal cancer.


Polypyrrole Film Detection Buffer Tetramethyl Ammonium Chloride Gold Microelectrode Asymmetric Polymerase Chain Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Fujiyama, S., Tanaka, M., Maeda, S., et al. (2002) Tumor markers in early diagnosis, follow-up and management of patients with hepatocellular carcinoma. Oncology 62, 57–63.PubMedCrossRefGoogle Scholar
  2. 2.
    Numa, F., Umayahara, K., Suehiro, Y., et al. (2001) New molecular tumor markers for endometrial cancer. Hum. Cell. 14, 272–274.PubMedGoogle Scholar
  3. 3.
    Fearon, E. R. (1993) K-ras gene mutation as a pathogenetic and diagnostic marker in human cancer. J. Natl. Cancer Inst. 15, 1978–1980.Google Scholar
  4. 4.
    Kondo, H., Sugano, K., Fukayama, N., et al. (1994) Detection of point mutations in the K-ras oncogene at codon 12 in pure pancreatic juice for diagnosis of pancreatic carcinoma. Cancer 73, 1589–1594.PubMedCrossRefGoogle Scholar
  5. 5.
    Smith, G., Carey, F. A., Beattie, J., et al. (2002) Mutations in APC, Kirsten-ras, and p53 alternative genetic pathways to colorectal cancer. Proc. Natl. Acad. Sci. USA 99, 9433–9438.PubMedCrossRefGoogle Scholar
  6. 6.
    Bazan, V., Migliavacca, M., Zanna, I., et al. (2002) Specific codon 13 K-ras mutations are predictive of clinical outcome in colorectal cancer patients, whereas codon 12 K-ras mutations are associated with mucinous histotype. Ann. Oncol. 13, 1438–1446.PubMedCrossRefGoogle Scholar
  7. 7.
    Schimanski, C. C., Linnemann, U., and Berger, M. R. (1999) Sensitive detection of K-ras mutations augments diagnosis of colorectal cancer metastases in the liver. Cancer Res. 59, 5169–5175.PubMedGoogle Scholar
  8. 8.
    Sidransky, D., Tokino, T., Hamilton, S. R., et al. (1992) Identification of ras oncogene mutations in the stool of patients with curable colorectal tumors. Science 256, 102–105.PubMedCrossRefGoogle Scholar
  9. 9.
    Hashimoto, T., Kobayashi, Y., Ishikawa, Y., et al. (2000) Prognostic value of genetically diagnosed lymph node micrometastasis in non-small cell lung carcinoma cases. Cancer Res. 60, 6472–6478.PubMedGoogle Scholar
  10. 10.
    Hibi, K., Robinson, C. R., Booker, S., et al. (1998) Molecular detection of genetic alterations in the serum of colorectal cancer patients. Cancer Res. 58, 1405–1407.PubMedGoogle Scholar
  11. 11.
    Bugawan, T. L., Begovich, A. B., and Erlich, H. A. (1990) Rapid HLA-DPB typing using enzymatically amplified DNA and nonradioactive sequence-specific oligonucleotide probes. Immunogenetics 32, 231–241.PubMedCrossRefGoogle Scholar
  12. 12.
    Hacia, J. G. (1999) Resequencing and mutational analysis using oligonucleotide microarrays. Nature Genet. 21, 42–47.PubMedCrossRefGoogle Scholar
  13. 13.
    Southern, E. M. (1996) High-density gridding: techniques and applications. Curr. Opin. Biotechnol. 7, 85–88.PubMedCrossRefGoogle Scholar
  14. 14.
    Guo, Z., Guilfoyle, R. A., Thiel, A. J., et al.(1994) Direct fluorescence analysis of genetic polymorphisms by hybridization with oligonucleotide arrays on glass supports. Nucleic Acids Res. 22, 5456–5465.PubMedCrossRefGoogle Scholar
  15. 15.
    Fodor, S. P. A., Read, J. L., Pirrung, M. C., et al. (1991) Light-directed, spatially addressable parallel chemical synthesis. Science 251, 767–773.PubMedCrossRefGoogle Scholar
  16. 16.
    Matson, R. S., Rampal, J., Pentoney, S. L., et al. (1995) Biopolymer synthesis on polypropylene support: oligonucleotide arrays. Anal. Biochem. 224, 110–116.PubMedCrossRefGoogle Scholar
  17. 17.
    Khrapko, K. A., Lysos, Y., Khorlin, A., et al. (1989) Hybridization of oligonucleotides as a method of DNA sequencing. FEBS Lett. 256, 118–122.PubMedCrossRefGoogle Scholar
  18. 18.
    Livache, T., Fouque, B., Roget, A., et al. (1998) Polypyrrole DNA chip on a silicon device: example of hepatitis C virus genotyping. Anal. Biochem. 15, 188–194.CrossRefGoogle Scholar
  19. 19.
    Pease, A. C., Solas, D., Sullivan, E. J., et al. (1994) Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc. Natl. Acad. Sci. USA 24, 5022–5026.CrossRefGoogle Scholar
  20. 20.
    Yershov, G., Barsky, V., Belgovskiy, A., et al. (1996) DNA analysis and diagnostics on oligonucleotide microchips. Proc. Natl. Acad. Sci. USA 14, 4913–4918.CrossRefGoogle Scholar
  21. 21.
    Livache, T., Bazin, H., and Mathis, G. (1998) Conducting polymers on microelectronic devices as tools for biological analyses. Clin. Chim. Acta 278, 171–176.PubMedCrossRefGoogle Scholar
  22. 22.
    Livache, T., Bazin, H., Caillat, P., et al. (1998) Electroconducting polymers for the construction of DNA or peptide arrays on silicon chips. Biosens. Bioelectron. 15, 629–634.CrossRefGoogle Scholar
  23. 23.
    Livache, T., Roget, A., Dejean, E., et al. (1994) Preparation of a DNA matrix via an electrochemically directed copolymerization of pyrrole and oligonucleotides bearing a pyrrole group. Nucleic Acids Res. 11, 2915–2921.CrossRefGoogle Scholar
  24. 24.
    Wu, D. Y., Ugozzoli, L., Pal, B. K., et al. (1989) Allele-specific enzymatic amplification of β-globin genomic DNA for diagnosis of sickle cell anemia. Proc. Natl. Acad. Sci. USA 86, 2757–2760.PubMedCrossRefGoogle Scholar
  25. 25.
    Deng, G. A. (1988) Sensitive non-radioactive PCR-RFLP analysis for detecting point mutations at the 12th codon of oncogene c-Ha-ras in DNAs of gastric cancer. Nucleic Acids Res. 16, 6231.PubMedCrossRefGoogle Scholar
  26. 26.
    Holland, P. M., Abramson, R. D., Watson, R., et al. (1991) Detection of specific polymerase chain reaction product by utilizing the 5′–3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc. Natl. Acad. Sci. USA 88, 7276–7280.PubMedCrossRefGoogle Scholar
  27. 27.
    Syvanen, A. C., Aalto-Setala, K., Harju, L., et al. (1990) A primer-guided nucleotide incorporation assay in the genotyping of apolipoprotein E. Genomics 8, 684–692.PubMedCrossRefGoogle Scholar
  28. 28.
    Bos, J. L., Verlaan de Vries, M., Jansen, A. M., et al. (1984) Three different mutations in the codon 61 of the human N-ras gene detected by synthetic oligonucleotide hybridization. Nucleic Acids Res. 12, 9155–9163.PubMedCrossRefGoogle Scholar
  29. 29.
    Landegren, U. (1993) Ligation-based DNA diagnostics. Bioessays 15, 761–765.PubMedCrossRefGoogle Scholar
  30. 30.
    Conner, B. J., Reyes, A. A., Morin, C., et al. (1983) Detection of sickle cell beta S-globin allele by hybridization with synthetic oligonucleotides. Proc. Natl. Acad. Sci. USA 80, 278–282.PubMedCrossRefGoogle Scholar
  31. 31.
    Iitia, A., Mikola, M., Gregersen, N., et al. (1994) Detection of a point mutation using short oligonucleotide probes in allele-specific hybridization. Biotechniques 17, 566–573.PubMedGoogle Scholar
  32. 32.
    Lopez-Crapez, E., Chypre, C., Saavedra, J., et al. (1997) Rapid and large-scale method to detect K-ras gene mutations in tumor samples. Clin. Chem. 43, 936–942.PubMedGoogle Scholar
  33. 33.
    Nguyen, H. K., Fournier, O., Asseline, U., et al. (1999) Smoothing of the thermal stability of DNA duplexes by using modified nucleosides and chaotropic agents. Nucleic Acids Res. 27, 1492–1498.PubMedCrossRefGoogle Scholar
  34. 34.
    Tombline, G., Bellizzi, D., and Sgaramella, V. (1996) Heterogeneity of primer extension products in asymmetric PCR is due both to cleavage by a structure-specific exo/endonuclease activity of DNA polymerases and to premature stops. Proc. Natl. Acad. Sci. USA 93, 2724–2728.PubMedCrossRefGoogle Scholar
  35. 35.
    Nikiforov, T. T., Rendle, R. B., Kotewicz, M. L., et al. (1994) The use of phosphorothioate primers and exonuclease hydrolysis for the preparation of single-stranded PCR products and their detection by solid-phase hybridization. PCR Methods Appl. 3, 285–291.PubMedGoogle Scholar
  36. 36.
    Mitsis, P. G. and Kwagh, J. G. (1999) Characterization of the interaction of lambda exonuclease with the ends of DNA. Nucleic Acids Res. 27, 3057–3063.PubMedCrossRefGoogle Scholar
  37. 37.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) In: Molecular Cloning: A Laboratory Manual, Analysis and cloning of eukaryotic genomic DNA. (Nolan, C., ed.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp. 9–16.Google Scholar
  38. 38.
    Caillat, P., David, D., Belleville, M., et al. (1999) Biochips on CMOS: an active matrix address array for DNA analysis. Sensors Actuators B 61, 154–162.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2004

Authors and Affiliations

  • Evelyne Lopez-Crapez
    • 1
  • Thierry Livache
    • 2
  • Patrice Caillat
    • 3
  • Daniela Zsoldos
    • 4
  1. 1.Centre de Recherche en CancérologieCRCC Val ďAurelleMontpellierFrance
  2. 2.CEA Grenoble, DRFMCRCC Val ďAurelleMontpellierFrance
  3. 3.CEA Grenoble, LETI, Department of MicrotechnologiesCRCC Val d’AurelleMontpellierFrance
  4. 4.Apibio, Zone ASTECGrenobleFrance

Personalised recommendations