UroVysion™ Multiprobe FISH in Urinary Cytology

  • Lukas Bubendorf
  • Bruno Grilli
Part of the Methods in Molecular Medicine book series (MIMM, volume 97)


Urinary cytology is used in combination with cystoscopy for the diagnosis of primary bladder cancer and to monitor the patients for early detection of recurrence after initial transurethral resection. Urinary cytology is highly specific for the detection of poorly differentiated urothelial carcinoma (G3), but notoriously unreliable in case of low-grade urothelial tumors (1, 2, 3). The sensitivity of urinary cytology for the detection of low-grade urothelial tumors is as low as 15–25% (1,4). Because of a broad cytological overlap between reactive urothelial changes and low-grade urothelial neoplasia, cytologists often have to capitulate by assigning samples to the uncertain and unrewarding category of cellular atypia. Several attempts have been made to improve the detection of neoplastic cells in urinary specimens (5, 6, 7, 8). Common drawbacks of these tests include high false-positive rates resulting from benign conditions and lack of reproducibility if applied in different laboratories. Chromosomal alterations are likely to be more tumor-specific than alterations of protein expression, as they occur frequently in bladder cancer but have only exceptionally been described in non-neoplastic conditions (9, 10, 11). Fluorescence in situ hybridization (FISH) allows for visualization of specific DNA sequences and can, therefore, be used for quantitation of chromosomes and genes, including aneusomies, chromosomal deletions, or amplifications (12,13). Applicability to interphase nuclei makes FISH an ideal tool for chromosomal analyses in cytopathology (14).


Vortex Formalin Microwave Acetone Mercury 


  1. 1.
    Koss, L.G., Deitch, D., Ramanathan, R., et al. (1985) Diagnostic value of cytology of voided urine. Acta Cytol. 29, 810–816.PubMedGoogle Scholar
  2. 2.
    Renshaw, A. A. (2000) Compassionate conservatism in urinary cytology. Diagn. Cytopathol. 22, 137–138.PubMedCrossRefGoogle Scholar
  3. 3.
    Renshaw, A. A. (2000) Subclassifying atypical urinary cytology specimens. Cancer 90, 222–229.PubMedCrossRefGoogle Scholar
  4. 4.
    Bastacky, S., Ibrahim, S., Wilczynski, S. P., et al. (1999) The accuracy of urinary cytology in daily practice. Cancer 87, 118–128.PubMedCrossRefGoogle Scholar
  5. 5.
    Ross, J. S. and Cohen, M. B. (2000) Ancillary methods for the detection of recurrent urothelial neoplasia. Cancer 90, 75–86.PubMedCrossRefGoogle Scholar
  6. 6.
    Konety, B. R. and Getzenberg, R. H. (2001) Urine based markers of urological malignancy. J. Urol. 165, 600–611.PubMedCrossRefGoogle Scholar
  7. 7.
    Saad, A., Hanbury, D. C., McNicholas, T. A., et al. (2001) The early detection and diagnosis of bladder cancer: a critical review of the options. Eur. Urol. 39, 619–633.PubMedCrossRefGoogle Scholar
  8. 8.
    van der Poel, H. G. and Debruyne, F. M. (2001) Can biological markers replace cystoscopy? An update. Curr. Opin. Urol. 11, 503–509.PubMedCrossRefGoogle Scholar
  9. 9.
    Richter, J., Jiang, F., Gorog, J. P., et al. (1997) Marked genetic differences between stage pTa and stage pT1 papillary bladder cancer detected by comparative genomic hybridization. Cancer Res. 57, 2860–2864.PubMedGoogle Scholar
  10. 10.
    Richter, J., Beffa, L., Wagner, U., et al. (1998) Patterns of chromosomal imbalances in advanced urinary bladder cancer detected by comparative genomic hybridization. Am. J. Pathol. 153, 1615–1621.PubMedCrossRefGoogle Scholar
  11. 11.
    Sauter, G., Moch, H., Wagner, U., et al. (1995) Y chromosome loss detected by FISH in bladder cancer. Cancer Genet. Cytogenet. 82, 163–169.PubMedCrossRefGoogle Scholar
  12. 12.
    Hopman, A. H., Poddighe, P. J., Smeets, A. W., et al. (1989) Detection of numerical chromosome aberrations in bladder cancer by in situ hybridization. Am. J. Pathol. 135, 1105–1117.PubMedGoogle Scholar
  13. 13.
    Werner, M., Wilkens, L., Aubele, M., et al. (1997) Interphase cytogenetics in pathology: principles, methods, and applications of fluorescence in situ hybridization (FISH). Histochem. Cell. Biol. 108, 381–390.PubMedCrossRefGoogle Scholar
  14. 14.
    Jiang, F. and Katz, R. L. (2002) Use of interphase fluorescence in situ hybridization as a powerful diagnostic tool in cytology. Diagn. Mol. Pathol. 11, 47–57.PubMedCrossRefGoogle Scholar
  15. 15.
    Sokolova, I., Halling, K. C., Jenkins, R. B., et al. (2000) The development of a multitarget, multicolor fluoroescence in situ hybridization assay for the detection of urothelial carcinoma in urine. J. Mol. Diagn. 2, 116–123.PubMedCrossRefGoogle Scholar
  16. 16.
    Hopman, A. H., Moesker, O., Smeets, A. W., et al. (1991) Numerical chromosome 1, 7, 9, and 11 aberrations in bladder cancer detected by in situ hybridization. Cancer Res. 51, 644–651.PubMedGoogle Scholar
  17. 17.
    Zhao, J., Richter, J., Wagner, U., et al. (1999) Chromosomal imbalances in noninvasive papillary bladder neoplasms (pTa). Cancer Res. 59, 4658–4661.PubMedGoogle Scholar
  18. 18.
    Eleuteri, P., Grollino, M. G., Pomponi, D., et al. (2001) Chromosome 9 aberrations by fluorescence in situ hybridisation in bladder transitional cell carcinoma. Eur. J. Cancer 37, 1496–1503.PubMedCrossRefGoogle Scholar
  19. 19.
    Halling, K. C., King, W., Sokolova, I. A., et al. (2000) A comparison of cytology and fluorescence in situ hybridization for the detection of urothelial carcinoma. J. Urol. 164, 1768–1775.PubMedCrossRefGoogle Scholar
  20. 20.
    Halling, K. C., King, W., Sokolova, I. A., et al. (2002) A comparison of BTA stat, hemoglobin dipstick, telomerase and Vysis UroVysion assays for the detection of urothelial carcinoma in urine. J. Urol. 167, 2001–2006.PubMedCrossRefGoogle Scholar
  21. 21.
    Bubendorf, L., Grilli, B., Sauter, G., et al. (2001) Multiprobe FISH for enhanced detection of bladder cancer in voided urine specimens and bladder washings. Am. J. Clin. Pathol. 116, 79–86.PubMedCrossRefGoogle Scholar
  22. 22.
    Placer, J., Espinet, B., Salido, M., et al. (2002) Clinical utility of a Multiprobe FISH assay in voided urine specimens for the detection of bladder cancer and its recurrences, compared with urinary cytology. Eur. Urol. 42, 547–552.PubMedCrossRefGoogle Scholar
  23. 23.
    Sarosdy, M. F., Schellhammer, P., Bokinsky, G., et al. (2002) Clinical evaluation of a multi-target fluorescent in situ hybridization assay for detection of bladder cancer. J. Urol. 168, 1950–1954.PubMedCrossRefGoogle Scholar
  24. 24.
    Takahashi, T., Lohse, C. M., Pankratz, S., et al. (2002) Predicting urothelial carcinoma recurrence with fluorescence in situ hyridization analysis of urine. J. Urol. 167(Suppl.) p. 62 (abstract 651).Google Scholar
  25. 25.
    Skacel, M., Pettay, J. D., Tsiftsakis, E. K., et al. (2001) Validation of a multicolor interphase fluorescence in situ hybridization assay for detection of transitional cell carcinoma on fresh and archival thin-layer, liquid-based cytology slides. Anal. Quant. Cytol. Histol. 23, 381–387.PubMedGoogle Scholar
  26. 26.
    Movsas, B., Hanlon, A. L., Pinover, W., et al. (1998) Is there an increased risk of second primaries following prostate irradiation? Int. J. Radiat. Oncol. Biol. Phys. 41, 251–255.PubMedCrossRefGoogle Scholar
  27. 27.
    Lopez de Mesa, R., Sierrasesumaga, L., Calasanz, M. J., et al. (2000) Nonclonal chromosomal aberrations induced by anti-tumoral regimens in childhood cancer: relationship with cancer-related genes and fragile sites. Cancer Genet. Cytogenet. 121, 78–85.PubMedCrossRefGoogle Scholar
  28. 28.
    Arber, D. A. and Speights, V. O. (1991) Aneuploidy in benign seminal vesicle epithelium: an example of the paradox of ploidy studies. Mod. Pathol. 4, 687–689.PubMedGoogle Scholar
  29. 29.
    Wojcik, E. M., Bassler, T. J., Jr., and Orozco, R. (1999) DNA ploidy in seminal vesicle cells. A potential diagnostic pitfall in urine cytology. Anal. Quant. Cytol. Histol. 21, 29–34.PubMedGoogle Scholar
  30. 30.
    Burton, J. L., Goepel, J. R., and Lee, J. A. (2000) Demand management in urine cytology: a single cytospin slide is sufficient. J. Clin. Pathol. 53, 718–719.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2004

Authors and Affiliations

  • Lukas Bubendorf
    • 1
  • Bruno Grilli
    • 1
  1. 1.Institute for PathologyUniversity of BaselBaselSwitzerland

Personalised recommendations