Site-Specific Immobilization of Biotinylated Proteins for Protein Microarray Analysis

  • Rina Y. P. Lue
  • Grace Y. J. Chen
  • Qing Zhu
  • Marie-Laure Lesaicherre
  • Shao Q. Yao
Part of the Methods in Molecular Biology book series (MIMB, volume 264)


The postgenome era has led to a new frontier of proteomics that requires the development of protein microarray, which enables us to unravel the biological function of proteins in a massively parallel fashion. Several ways of immobilizing proteins onto surfaces have been reported, but many of these attachments are unspecific, resulting in the unfavorable orientation of the immobilized proteins. His6 tag has been used to site-specifically immobilize proteins onto nickel-coated slides, which presumably oriented proteins uniformly on the surface of the slide. However, the binding between Ni-NTA and His tag proteins is not strong, causing the immobilized proteins to dissociate from the slide even under simple wash conditions. The authors have developed a novel strategy of using an intein-mediated expression system to generate biotinylated proteins suitable for immobilization onto avidin-functionalized glass slides. Array-scan results not only show successful immobilization of proteins onto slides by antibody detection method but also full retention of biological activities of the immobilized proteins. The strong and specific interaction between biotin and avidin also permits the use of stringent incubation and washing conditions on the protein microchip, thus making it a highly robust method for array studies.

Key Words

Protein array C-terminal biotinylation biotin-avidin interaction high-throughput intein 


  1. 1.
    Chen, G. Y. J., Uttamchandani, M., Lue, Y. P. R., et al. (2003) Array-based technologies and their applications in proteomics. Curr. Top. Med. Chem. 3, 705–724.PubMedCrossRefGoogle Scholar
  2. 2.
    Haab, B. B., Dunham, M. J., and Brown, P. O. (2001) Protein microarray for highly parallel detection and quantitation of specific proteins and antibodies in complex solution. Genome Biol. 2, 1–13.CrossRefGoogle Scholar
  3. 3.
    Schweitzer, B. and Kingsmore, S. (2002) Measuring proteins on microarray. Curr. Opin. Biotechnol. 13, 14–19.PubMedCrossRefGoogle Scholar
  4. 4.
    MacBeath, G. and Schreiber, S. L. (2000) Printing proteins as microarrays for high-throughput function determination. Science 289, 1760–1763.PubMedGoogle Scholar
  5. 5.
    Zhu, H., Klemic, J. F., Chang, S., et al. (2000) Analysis of yeast protein kinases using protein chips. Nat. Genet. 26, 283–289.PubMedCrossRefGoogle Scholar
  6. 6.
    Wang, D., Liu, S., Trummer, B. J., et al. (2002) Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host. Nat. Biotechnol. 20, 275–280.PubMedCrossRefGoogle Scholar
  7. 7.
    Zhu, H., Bilgin, M., Bangham, R., et al. (2001) Global analysis of protein activities using proteome chips. Science 293, 2101–2105.PubMedCrossRefGoogle Scholar
  8. 8.
    Lesaicherre, M. L., Uttamchandani, M., Chen, G. Y. J., et al. (2002) Developing sitespecific immobilization strategies of peptides in a microarray. Bioorg. Med. Chem. Lett. 12, 2079–2083.PubMedCrossRefGoogle Scholar
  9. 9.
    Lesaicherre, M. L., Uttamchandani, M., Chen, G. Y. J., et al. (2002) Antibody-based fluorescence detection of kinase activity on a peptide array. Bioorg. Med. Chem. Lett. 12, 2085–2088.PubMedCrossRefGoogle Scholar
  10. 10.
    Lesaicherre, M. L., Lue, Y. P. R., Chen, G. Y. J., et al. (2002) Intein-mediated biotinylation of proteins and its application in a protein microarray. J. Am. Chem. Soc. 124, 8768–8769.PubMedCrossRefGoogle Scholar
  11. 11.
    Paborsky, L. R., Dunn, K. E., Gibbs, C. S., et al. (1996) A nickel chelate microtiter plate assay for six histidine-containing proteins. Anal. Biochem. 234, 60–65.PubMedCrossRefGoogle Scholar
  12. 12.
    Cronan, J. E. (1990) Biotinylation of proteins in vivo. A posttranslational modification to label, purify, and study proteins. J. Biol. Chem. 265, 10,327–10,333.PubMedGoogle Scholar
  13. 13.
    Samols, D., Thornton, C. G., Murtif, V. L., et al. (1988) Evolutionary conservation among biotin enzymes. J. Biol. Chem. 263, 6461–6464.PubMedGoogle Scholar
  14. 14.
    Stolz, J., Ludwig, A., and Sauer, N. (1998) Bacteriophage lambda surface display of a bacterial biotin acceptor domain reveals the minimal peptide size required for biotinylation. FEBS Lett. 440, 213–217.PubMedCrossRefGoogle Scholar
  15. 15.
    Beckett, D., Kovaleva, E., and Schatz, P. J. (1999) A minimal peptide substrate in biotin holoenzyme synthetase-catalyzed biotinylation. Protein Sci. 8, 921–929.PubMedCrossRefGoogle Scholar
  16. 16.
    Cronan, J. E. and Reed, K. E. (2000) Biotinylation of proteins in vivo: a useful posttranslational modification for protein analysis. Methods Enzymol. 326, 440–458.PubMedCrossRefGoogle Scholar
  17. 17.
    Cull, M. G. and Schatz, P. J. (2000) Biotinylation of proteins in vitro and in vivo using small peptide tags. Methods Enzymol. 326, 430–440.PubMedCrossRefGoogle Scholar
  18. 18.
    Xu, M. Q. and Evan, T. C. (2001) Intein-mediated ligation and cyclization of expressed proteins. Methods 24, 257–277.PubMedCrossRefGoogle Scholar
  19. 19.
    Evan, T. C. and Xu, M. Q. (1999) Intein-mediated protein ligation: harnessing nature’s escape artists. Biopolymers 51, 333–342.CrossRefGoogle Scholar
  20. 20.
    Muir, T. W., Sondhi, D., and Cole, P. A. (1998) Expressed protein ligation: a general method for protein engineering. Proc. Natl. Acad. Sci. USA 98, 6705–6710.CrossRefGoogle Scholar
  21. 21.
    Muir, T. W. (2001) Development and application of expressed protein ligation. Synlett 6, 733–740.CrossRefGoogle Scholar
  22. 22.
    Tolbert, T. and Wong, C.-H. J. (2000) Intein-mediated synthesis of proteins containing carbohydrates and other molecular probes. J. Am. Chem. Soc. 122, 5421–5428.CrossRefGoogle Scholar
  23. 23.
    Studier, F. W. and Moffatt, B. A. (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189, 113–130.PubMedCrossRefGoogle Scholar
  24. 24.
    Sam brook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2004

Authors and Affiliations

  • Rina Y. P. Lue
    • 1
  • Grace Y. J. Chen
    • 1
    • 2
  • Qing Zhu
    • 2
  • Marie-Laure Lesaicherre
    • 2
  • Shao Q. Yao
    • 1
    • 2
  1. 1.Department of Biological SciencesNational University of SingaporeSingapore
  2. 2.Department of ChemistryNational University of SingaporeSingapore

Personalised recommendations