Skip to main content

Mobile Genetic Elements as Natural Tools for Genome Evolution

  • Protocol
Mobile Genetic Elements

Part of the book series: Methods in Molecular Biology ((MIMB,volume 260))

Abstract

Transposable elements (TEs) are ubiquitous components of all living organisms, and in the course of their coexistence with their respective host genomes, these parasitic DNAs have played important roles in the evolution of complex genetic networks. The interaction between mobile DNAs and their host genomes are quite diverse, ranging from modifications of gene structure and regulation to alterations in general genome architecture. Thus over evolutionary time these elements can be regarded as natural molecular tools in shaping the organization, structure, and function of eukaryotic genes and genomes. Based on their intrinsic properties and features, mobile DNAs are widely applied at present as a technical “toolbox,” essential for studying a diverse spectrum of biological questions. In this chapter we aim to review both the evolutionary impact of TEs on genome evolution and their valuable and diverse methodological applications as the molecular tools presented in this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kapitonov, V. V. and Jurka, J. (2003) Molecular paleontology of transposable elements in the Drosophila melanogaster genome. Proc. Natl. Acad. Sci. USA 100, 6569–6574.

    Article  PubMed  CAS  Google Scholar 

  2. International Human Genome Sequencing Consortium (2001) A physical map of the human genome. Nature 409, 934–941.

    Article  Google Scholar 

  3. Berg, D. E. and Howe, M. M., eds. Mobile DNA. American Society for Microbiology, Washington, DC, 1989.

    Google Scholar 

  4. Shapiro, J. A. The discovery and significance of mobile genetic elements. In Mobile Genetic Elements (Sherrat, D. J., ed.). IRL Press, Oxford, 1995, pp. 1–17.

    Google Scholar 

  5. McClintock, B. The Discovery and Characterization of Transposable Elements: The Collected Papers of B. McClintock. Garland, New York, 1987.

    Google Scholar 

  6. Fedoroff, N., Wessler, S., and Shure, M. (1983) Isolation of the transposable maize controlling element Ac and Ds. Cell 35, 243–251.

    Article  Google Scholar 

  7. McDonald, J. F., ed. Transposable Elements and Evolution. Contemporary issues in Genetics and Evolution. Kluwer Academic Publishers, Dordrecht, Netherlands, 1993.

    Google Scholar 

  8. Britten, R. J. (1996) Cases of ancient mobile element DNA insertions that now affect gene regulation. Mol. Phylogenet. Evol. 5, 13–17.

    Article  PubMed  CAS  Google Scholar 

  9. Kidwell, M. G. and Lisch, D. R. (2001) Perspective: transposable elements, parasitic DNA, and genome evolution. Evolution Int. J. Org. Evolution 55, 1–24.

    CAS  Google Scholar 

  10. Taylor, A. (1963) Bacteriophage-induced mutation in E. coli. Proc. Natl. Acad. Sci. USA 50, 1043.

    Article  PubMed  CAS  Google Scholar 

  11. Adhya, S. L. and Shapiro, J. A. (1969) The galactose operon of E. coli K-12. I. Structural and pleiotropic mutations of the operon. Genetics 62, 231–247.

    PubMed  CAS  Google Scholar 

  12. Shapiro, J. A. (1969) Mutations caused by the insertion of genetic material into the galactose operon of Escherichia coli. J. Mol. Biol. 40, 93–105.

    Article  PubMed  CAS  Google Scholar 

  13. Shapiro, J. A. and Adhya, S. L. (1969) The galactose operon of E. coli K-12. II. A deletion analysis of operon structure and polarity. Genetics 62, 249–264.

    PubMed  CAS  Google Scholar 

  14. Heffron, F. Tn3 and its relative. In Mobile Genetic Elements (Shapiro, J., ed.). Academic Press, New York, 1983, pp. 223–260.

    Google Scholar 

  15. Kleckner, N. Transposon Tn10. In Mobile Genetic Elements (Shapiro, J., ed.). Academic Press, New York, 1983, pp. 261–298.

    Google Scholar 

  16. Doolittle, W. F. and Sapienza, C. (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature 284, 601–603.

    Article  PubMed  CAS  Google Scholar 

  17. Orgel, L. E. and Crick, F. H. C. (1980) Selfish DNA: the ultimate parasite. Nature 284, 604–607.

    Article  PubMed  CAS  Google Scholar 

  18. Dawkins, R., ed. The Selfish Gene. Oxford University Press, UK, 1976.

    Google Scholar 

  19. McDonald, J. F. (1995) Transposable elements: possible catalysts of organismic evolution. Trends Ecol. Evol. 10, 123–126.

    Article  PubMed  CAS  Google Scholar 

  20. Miller, W. J., McDonald, J. F., Nouaud, D., and Anxolabehere, D. (1999) Molecular domestication—more than a sporadic episode in evolution. Genetica 107, 197–207.

    Article  PubMed  CAS  Google Scholar 

  21. Kidwell, M. G. and Lisch, D. R. (2000) Transposable elements and host genome evolution. Trends Ecol. Evol. 15, 95–99.

    Article  PubMed  Google Scholar 

  22. Capy, P., Bazin, C., Higuet, D., and Langin, T., eds. Evolution and Impact of Transposable Elements. Kluwer Academic Publishers, Dordrecht, Netherlands, 1997.

    Google Scholar 

  23. Capy, P., Gasperi, G., Biémont, C., and Bazin, C. (2000) Stress and transposable elements: co-evolution or useful parasites? Heredity 85, 101–106.

    Article  PubMed  CAS  Google Scholar 

  24. Charlesworth, B., Sniegowki, P., and Stephan, W. (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371, 215–220.

    Article  PubMed  CAS  Google Scholar 

  25. Charlesworth, B., Langley, C. H., and Stephan, W. (1986) The evolution of restricted recombination and the accumulation of repeated DNA sequences. Genetics 112, 947–962.

    PubMed  CAS  Google Scholar 

  26. Charlesworth, B. and Langley, C. H. (1986) The evolution of self-regulated transposition of transposable elements. Genetics 112, 359–383.

    PubMed  CAS  Google Scholar 

  27. Biemont, C., Vieira, C., Hoogland, C., Cizeron, G., Loevenbruck, C., Arnault, C., et al. (1997) Maintenance of transposable element copy number in natural populations of Drosophila melanogaster and D. simulans. Genetica 100, 161–166.

    Article  PubMed  CAS  Google Scholar 

  28. Dimitri, P., Arca, B., Berghella, L., and Mei, E. (1997) High genetic instability of heterochromatin after transposition of the LINE-like I factor in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 94, 8052–8057.

    Article  PubMed  CAS  Google Scholar 

  29. Dimitri, P. and Junakovic, N. (1999) Revising the selfish DNA hypothesis: New evidence on accumulation of transposable elements in heterochromatin. Trends Genet. 15, 123–124.

    Article  PubMed  CAS  Google Scholar 

  30. Dorer, D. R. and Henikoff, S. (1994) Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell 77, 993–1,002.

    Article  PubMed  CAS  Google Scholar 

  31. Dorer, D. R. and Henikoff, S. (1997) Transgene repeat arrays interact with distant heterochromatin and cause silencing in cis and trans. Genetics 147, 1181–1190.

    PubMed  CAS  Google Scholar 

  32. Ananiev, E. V., Phillips, R. L., and Rines, H. W. (1998) Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proc. Natl. Acad. Sci. USA 95, 13,073–13,078.

    Article  PubMed  CAS  Google Scholar 

  33. Ananiev, E. V., Phillips, R. L., and Rines, H. W. (1998) Complex structure of knob DNA on maize chromosome 9. Retrotransposon invasion into heterochromatin. Genetics 149, 2025–2037.

    PubMed  CAS  Google Scholar 

  34. Ananiev, E. V., Phillips, R. L., and Rines, H. W. (1998) A knob-associated tandem repeat in maize capable of forming fold-back DNA segments: are chromosome knobs megatransposons? Proc. Natl. Acad. Sci. USA 95, 10,785–10,790.

    Article  PubMed  CAS  Google Scholar 

  35. Steinemann, M. and Steinemann, S. (1997) The enigma of Y chromosome degeneration: TRAM, a novel retrotransposon is preferentially located on the Neo-Y chromosome of Drosophila miranda. Genetics 145, 261–266.

    PubMed  CAS  Google Scholar 

  36. Miller, W. J., Nagel, A., Bachmann, J., and Bachmann, L. (2000) Evolutionary dynamics of the SGM transposon family in the Drosophila obscura species group. Mol. Biol. Evol. 17, 1597–1609.

    PubMed  CAS  Google Scholar 

  37. Lim, J. (1988) Intrachromosomal rearrangements mediated by hobo transposons in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 85, 9,153–9,157.

    Article  PubMed  CAS  Google Scholar 

  38. Lim, J. and Simmons, M. J. (1994) Gross chromosome rearrangements mediated by transposable elements in Drosophila melanogaster. BioEssays 16, 269–275.

    Article  PubMed  CAS  Google Scholar 

  39. Lyttle, T. W. and Haymer, D. S. (1992) The role of transposable element hobo in the origin of the endemic inversions in wild populations of Drosophila melanogaster. Genetica 83, 113–126.

    Article  Google Scholar 

  40. Ladeveze, V., Aulard, S., Chaminade, N., Periquet, G., and Lemeunier, F. (1998) Hobo transposons causing chromosomal breakpoints. Proc. R. Soc. Lond. B. Biol. Sci. 265, 1157–1159.

    Article  CAS  Google Scholar 

  41. Kusakabe, S., Harada, K., and Mukai, T. (1990) The rare inversion with a P element at the breakpoint maintained in a natural population of Drosophila melanogaster. Genetica 82, 111–115.

    Article  PubMed  CAS  Google Scholar 

  42. Caceres, M., Ranz, J. M., Barbadilla, A., Long, M., and Ruiz, A. (1999) Generation of a widespread Drosophila inversion by a transposable element. Science 285, 415–418.

    Article  PubMed  CAS  Google Scholar 

  43. Eggleston, W. B., Rim, N. R., and Lim, J. K. (1996) Molecular characterization of hobo-mediated inversions in Drosophila melanogaster. Genetics 144, 647–656.

    PubMed  CAS  Google Scholar 

  44. Lim, J. K. and Simmons, M. J. (1994) Gross chromosome rearrangements mediated by transposable elements in Drosophila melanogaster. BioEssays 16, 269–275.

    Article  PubMed  CAS  Google Scholar 

  45. Okada, N., Hamada, M., Ogiwara, I., and Ohshima, K. (1997) SINEs and LINEs share common 3′ sequences: a review. Gene 205, 229–243.

    Article  PubMed  CAS  Google Scholar 

  46. Kajikawa, M. and Okada, N. (2002) LINEs mobilize SINEs in the eel through a shared 3′ sequence. Cell 111, 433–444.

    Article  PubMed  CAS  Google Scholar 

  47. Esnault, C., Maestre, J., and Heidmann, T. (2000) Human LINE retrotransposons generate processed pseudogenes. Nat. Genet. 24, 363–367.

    Article  PubMed  CAS  Google Scholar 

  48. Brosius, J. (1991) Retroposons—seeds of evolution. Science 251, 753.

    Article  PubMed  CAS  Google Scholar 

  49. Long, M. and Langley, C. H. (1993) Natural selection and the origin of jingwei, a chimeric processed functional gene in Drosophila. Science 260, 91–95.

    Article  PubMed  CAS  Google Scholar 

  50. Wang, W., Zhang, J., Alvarez, C., Llopart, A., and Long, M. (2000) The origin of the Jingwei gene and the complex modular structure of its parental gene, yellow emperor, in Drosophila melanogaster. Mol. Biol. Evol. 17, 1294–1301.

    PubMed  CAS  Google Scholar 

  51. Viale, A., Courseaux, A., Presse, F., Ortola, C., Breton, C., Jordan, D., et al. (2000) Structure and expression of the variant melanin-concentrating hormone genes: Only PMCHL1 is transcribed in the developing human brain and encodes a putative protein. Mol. Biol. Evol. 17, 1,626–1,640.

    PubMed  CAS  Google Scholar 

  52. Viale, A., Ortola, C., Richard, F., Vernier, P., Presse, F., Schilling, S., et al. (1998) Emergence of a brain-expressed variant melanin-concentrating hormone gene during higher primate evolution: a gene in search of a function. Mol. Biol. Evol. 15, 196–214.

    PubMed  CAS  Google Scholar 

  53. Long, M. (2001) The evolution of novel genes. Curr. Opin. Genet. Dev. 11, 673–680.

    Article  PubMed  CAS  Google Scholar 

  54. Long, M., ed. Origin and Evolution of New Gene Functions. Genetica 118 (Special Issue). Kluwer Academic Publishers, Dordrecht, Netherlands, 2003.

    Google Scholar 

  55. Miller, W. J., Hagemann, S., Reiter, E., and Pinsker, W. (1992) P element homologous sequences are tandemly repeated in the genome of Drosophila guanche. Proc. Natl. Acad. Sci. USA 89, 4018–4022.

    Article  PubMed  CAS  Google Scholar 

  56. Nouaud, D. and Anxolabéhère, D. (1997) P element domestication: A stationary truncated P element may encode a 66-kDa repressor-like protein in the Drosophila montium species subgroup. Mol. Biol. Evol. 14, 1132–1144.

    PubMed  CAS  Google Scholar 

  57. Biessmann, H., Valgeirsdottir, V., Lofsky, A., Chin, C., Ginther, B., Levis, R. W., et al. (1992) HeT-A, a transposable element specifically involved in “Healing” broken chromosome ends in Drosophila. Mol. Cell. Biol. 12, 3910–3918.

    PubMed  CAS  Google Scholar 

  58. Levis, R. W., Ganesan, R., Houtchens, K., Tolar, L. A., and Sheen, F. M. (1993) Transposons in place of telomeric repeats at a Drosophila telomere. Cell 75, 1083–1093.

    Article  PubMed  CAS  Google Scholar 

  59. Pardue, M. L. Drosophila telomeres: another way to end it all. In Telomeres (Greider, C. and Blackburn, E. H., eds.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1995, pp. 339–370.

    Google Scholar 

  60. Nouaud, D., Boeda, B., Levy, L., and Anxolabéhère, D. (1999) A P element has induced intron formation in Drosophila. Mol. Biol. Evol. 1503–1510.

    Google Scholar 

  61. Agrawal, A., Eastman, Q. M., and Schatz, D. G. (1998) Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394, 744–751.

    Article  PubMed  CAS  Google Scholar 

  62. Hiom, K., Melek, M., and Gellert, M. (1998) DNA transposition by the RAG1 and RAG2 proteins: a possible source of oncogenic translocations [see comments]. Cell 94, 463–470.

    Article  PubMed  CAS  Google Scholar 

  63. Plasterk, R. (1998) Ragtime jumping. Nature 394, 718–719.

    Article  PubMed  CAS  Google Scholar 

  64. Kipling, D. and Warburton, P. E. (1997) Centromeres, CENP-B and Tigger too. Trends Genet. 13, 141–145.

    Article  PubMed  CAS  Google Scholar 

  65. Smit, A. F. and Riggs, A. D. (1996) Tiggers and other DNA transposon fossils in the human genome. Proc. Natl. Acad. Sci. USA 93, 1443–1448.

    Article  PubMed  CAS  Google Scholar 

  66. Vieira, C. and Biemont, C. (1997) Transposition rate of the 412 retrotransposable element is independent of copy number in natural populations of Drosophila simulans. Mol. Biol. Evol. 14, 185–188.

    PubMed  CAS  Google Scholar 

  67. Harada, K., Yukuhiro, K., and Mukai, T. (1990) Transposition rates of movable genetic elements in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 87, 3248–3252.

    Article  PubMed  CAS  Google Scholar 

  68. Suh, D. S., Choi, E. H., Yamazaki, T., and Harada, K. (1995) Studies on the transposition rates of mobile genetic elements in a natural population of Drosophila melanogaster. Mol. Biol. Evol. 12, 748–758.

    PubMed  CAS  Google Scholar 

  69. McClintock, B. (1984) The significance of responses of the genome to challenge. Science 226, 792–801.

    Article  PubMed  CAS  Google Scholar 

  70. Grandbastien, M.-A., Lucas, H., Morel, J.-B., Mhiri, C., Vernhettes, S., and Casacuberta, J. M. (1997) The expression of the tobacco Tnt1 retrotransposon is linked to the plant defense responses. Genetica 100, 241–252.

    Article  PubMed  CAS  Google Scholar 

  71. Grandbastien, M.-A. (1998) Activation of plant retrotransposons under stress conditions. Trends Plant. Sci. 3, 181–187.

    Article  Google Scholar 

  72. Mhiri, C., Morel, J.-B., Vernhettes, S., Casacuberta, J. M., Lucas, H., and Grandbastien, M.-A. (1997) The promoter of the tobacco Tnt1 retrotransposon is induced by wounding and by abiotic stress. Plant Mol. Biol. 33, 257–266.

    Article  PubMed  CAS  Google Scholar 

  73. Melayah, D., Bonnivard, E., Chalhoub, B., Audeon, C., and Grandbastien, M.-A. (2001) The mobility of the tobacco Tnt1 retrotransposon correlates with its transcriptional activation by fungal factors. Plant J. 28, 159–168.

    Article  PubMed  CAS  Google Scholar 

  74. Hall, B. G. (1998) Adaptive mutagenesis: a process that generates almost exclusively beneficial mutations. Genetica 102103, 109–125.

    Article  PubMed  Google Scholar 

  75. Hall, B. G. (1999) Mobile elements as activators of cryptic genes in E. coli. Genetica 107, 181–187.

    Article  PubMed  CAS  Google Scholar 

  76. Giraud, T. and Capy, P. (1996) Somatic activity of the mariner transposable element in natural populations of Drosophila simulans. Proc. R. Soc. Lond. B. Biol. Sci. 263, 1481–1486.

    Article  CAS  Google Scholar 

  77. Viera, C. and Biémont, C. (1996) Geographical variation in insertion site number of retrotransposon 412 in Drosophila simulans. J. Mol. Evol. 42, 443–451.

    Article  Google Scholar 

  78. Chakrani, F., Capy, P., and David, J. R. (1993) Developmental temperature and somatic excision rate of mariner transposable element in three natural populations of Drosophila simulans. Genet. Sel. Evol. 25, 121–132.

    Article  CAS  Google Scholar 

  79. Hartl, D. L. Transposable element mariner in Drosophila species. In Mobile DNA (Berg, D. E. and Howe, M. M., eds.). American Society for Microbiology, Washington D.C., 1989, pp. 531–536.

    Google Scholar 

  80. Lampe, D. J., Grant, T. E., and Robertson, H. M. (1998) Factors affecting transposition of the Himar1 mariner transposon in vitro. Genetics 149, 179–187.

    PubMed  CAS  Google Scholar 

  81. Mackay, T. F. C. (1984) Jumping genes meet abdominal bristles: hybrid dysgenesis-induced quantitative variation in Drosophila melanogaster. Genet. Res. 44, 231–237.

    Article  Google Scholar 

  82. Currie, D. B., Mackay, T. F., and Partridge, L. (1998) Pervasive effects of P element mutagenesis on body size in Drosophila melanogaster. Genet. Res. 72, 19–24.

    Article  PubMed  CAS  Google Scholar 

  83. Lai, C. and Mackay, T. F. (1993) Mapping and characterization of P-element-induced mutations at quantitative trait loci in Drosophila melanogaster. Genet. Res. 61, 177–193.

    Article  PubMed  CAS  Google Scholar 

  84. Long, A. D., Lyman, R. F., Langley, C. H., and Mackay, T. F. (1998) Two sites in the Delta gene region contribute to naturally occurring variation in bristle number in Drosophila melanogaster. Genetics 149, 999–1017.

    PubMed  CAS  Google Scholar 

  85. Long, A. D., Lyman, R. F., Morgan, A. H., Langley, C. H., and Mackay, T. F. (2000) Both naturally occurring insertions of transposable elements and intermediate frequency polymorphisms at the achaete-scute complex are associated with variation in bristle number in Drosophila melanogaster. Genetics 154, 1255–1269.

    PubMed  CAS  Google Scholar 

  86. Lyman, R. F., Lawrence, F., Nuzhudin, S. V., and Mackay, T. F. C. (1996) Effects of single P-element insertions on bristle number and viability in Drosophila melanogaster. Genetics 143, 277–292.

    PubMed  CAS  Google Scholar 

  87. McDonald, J. F., Matyunina, L. V., Wilson, S., Jordan, I. K., Bowen, N. J., and Miller, W. J. (1997) LTR retrotransposons and the evolution of eukaryotic enhancers. Genetica 100, 3–13.

    Article  PubMed  CAS  Google Scholar 

  88. Bryan, G. J. and Hartl, D. L. (1988) Maternally inherited transposons excision in Drosophila simulans. Science 240, 215–217.

    Article  PubMed  CAS  Google Scholar 

  89. Bucheton, A. (1979) Non-Mendelian female sterility in Drosophila melanogaster: influence of aging and thermic treatments. III. Cumulative effects induced by these factors. Genetics 93, 131–142.

    PubMed  CAS  Google Scholar 

  90. Coen, E. S., Robbins, T. P., and Almeida, J. Consequences and mechanisms of transposition in Antirrhinum majus. In Mobile DNA (Berg, D. E. and Howe, M. M., eds.), American Society for Microbiology, Washington, DC, 1989, pp. 413–436.

    Google Scholar 

  91. Ho, Y. T., Weber, S. M., and Lim, J. K. (1993) Interacting hobo transposons in an inbred strain and interaction regulation in hybrids of Drosophila melanogaster. Genetics 134, 895–908.

    PubMed  CAS  Google Scholar 

  92. Kidwell, M. G. (1981) Hybrid dysgenesis in Drosophila melanogaster: the genetics of cytotype determination in a neutral strain. Genetics 98, 275–290.

    PubMed  CAS  Google Scholar 

  93. Spradling, A., Stern, D., Beaton, A., Rhem, E., Laverty, T., Mozden, N., et al. (1999) The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes. Genetics 153, 135–177.

    PubMed  CAS  Google Scholar 

  94. Gloor, G. B., Nassif, N. A., Johnson-Schlitz, D. M., Preston, C. R., and Engels, W. R. (1991) Targeted gene replacement in Drosophila via P element-induced gap repair. Science 253, 1110–1117.

    Article  PubMed  CAS  Google Scholar 

  95. Nassif, N., Penney, J., Pal, S., Engels, W., and Gloor, G. (1994) Efficient copying of nonhomologous sequences from ectopic sites via P-element-induced gap repair. Mol. Cell. Biol. 14, 13–25.

    Google Scholar 

  96. Rong, Y. and Golic, K. (2000) Gene targeting by homologous recombination in Drosophila. Science 288, 2013–2018.

    Article  PubMed  CAS  Google Scholar 

  97. Henikoff, S. and Matzke, M. (1997) Exploring and explaining epigenetic effects. Trends Genet. 13, 293–295.

    Article  PubMed  CAS  Google Scholar 

  98. Yoder, J., Walsh, C., and Bestor, T. (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 13, 335–340.

    Article  PubMed  CAS  Google Scholar 

  99. McDonald, J. F. (1998) Transposable elements, gene silencing and macroevolution. Trends Ecol. Evol. 13, 94–95.

    Article  PubMed  CAS  Google Scholar 

  100. Napoli, C., Lemieux, C., and Jorgensen, R. (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2, 279–289.

    Article  PubMed  CAS  Google Scholar 

  101. Kelly, W. and Fire, A. (1998) Chromatin silencing and the maintenance of a functional germline in Caenorhabditis elegans. Development 125, 2451–2456.

    PubMed  CAS  Google Scholar 

  102. Ketting, R., Haverkamp, T., van Luenen, H., and Plasterk, R. (1999) Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell 99, 133–141.

    Article  PubMed  CAS  Google Scholar 

  103. Tabara, H., Sarkissian, M., Kelly, W., Fleenor, J., Grishok, A., Timmons, L., et al. (1999) The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99, 123–132.

    Article  PubMed  CAS  Google Scholar 

  104. Kim, J. M., Vanguri, S., Boeke, J. D., Gabriel, A., and Voytas, D. F. (1998) Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res. 8, 464–478.

    PubMed  CAS  Google Scholar 

  105. Wayne, M., Hackett, J., Dilda, C., Nuzhdin, S., Pasyukova, E., and Mackay, T. (2001) Quantitative trait locus mapping of fitness-related traits in Drosophila melanogaster. Genet. Res. 77, 107–116.

    Article  PubMed  CAS  Google Scholar 

  106. Bushman, F., ed. Lateral DNA Transfer: Mechanisms and Consequences. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2002.

    Google Scholar 

  107. Capy, P., Anxolabéhère, D., and Langin, T. (1994) The strange phylogenies of transposable elements: are horizontal transfers the only explanation? Trends Genet. 10, 7–12.

    Article  PubMed  CAS  Google Scholar 

  108. Cummings, M. P. (1994) Transmission patterns of eukaryotic transposable elements: arguments for and against horizontal transfer. Trends Ecol. Evol. 9, 141–145.

    Article  PubMed  CAS  Google Scholar 

  109. Daniels, S. B., Peterson, K. R., Strausbaugh, L. D., Kidwell, M. G., and Chovnick, A. (1990) Evidence for horizontal transmission of the P element between Drosophila species. Genetics 124, 339–355.

    PubMed  CAS  Google Scholar 

  110. Kidwell, M. G. (1992) Horizontal transfer of P elements and other short inverted repeat transposons. Genetica 83, 275–286.

    Article  Google Scholar 

  111. Robertson, H. M. and Lampe, D. J. (1995) Recent horizontal transfer of a mariner transposable element among and between Diptera and Neuroptera. Mol. Biol. Evol. 12, 850–862.

    PubMed  CAS  Google Scholar 

  112. Hagemann, S., Haring, E., and Pinsker, W. (1996) Repeated horizontal transfer of P transposons between Scaptomyza pallida and Drosophila bifasciata. Genetica 98, 43–51.

    Article  PubMed  CAS  Google Scholar 

  113. Jordan, I. K., Matyunina, L. V., and McDonald, J. F. (1999) Evidence for the recent horizontal transfer of long terminal repeat retrotransposon. Proc. Natl. Acad. Sci. USA 96, 12,621–12,625.

    Article  PubMed  CAS  Google Scholar 

  114. Khillan, J. S., Overbeek, P. A., and Westphal, H. (1985) Drosophila P-element integration in the mouse. Dev. Biol. 109, 247–250.

    Article  PubMed  CAS  Google Scholar 

  115. Miller, L. H., Sakai, R. K., Romans, P., Gwadz, R. W., Kantoff, P., and Coon, H. G. (1987) Stable integration and expression of a bacterial gene in the mosquito Anopheles gambiae. Science 237, 779–781.

    Article  PubMed  CAS  Google Scholar 

  116. O’Brochta, D. A. and Handler, A. M. (1988) Mobility of P-elements in Drosophilids and non-Drosophilids. Proc. Natl. Acad. Sci. USA 85, 6052–6056.

    Article  Google Scholar 

  117. Atkinson, P. W., Pinkerton, A. C., and O’Brochta, D. A. (2001) Genetic transformation systems in insects. Annu. Rev. Entomol. 46, 317–346.

    Article  PubMed  CAS  Google Scholar 

  118. Ivics, Z., Hackett, P. B., Plasterk, R. H., and Izsvak, Z. (1997) Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91, 501–510.

    Article  PubMed  CAS  Google Scholar 

  119. Auge-Gouillou, C., Hamelin, M. H., Demattei, M. V., Periquet, M., and Bigot, Y. (2001) The wild-type conformation of the Mos-1 inverted terminal repeats is suboptimal for transposition in bacteria. Mol. Genet. Genomics 265, 51–57.

    Article  PubMed  CAS  Google Scholar 

  120. Sherman, A., Dawson, A., Mather, C., Gilhooley, H., Li, Y., Mitchell, R. F. D., et al. (1998) Transposition of the Drosophila element mariner into the chicken germ line. Nat. Biotechnol. 16, 1050–1053.

    Article  PubMed  CAS  Google Scholar 

  121. Matzke, M., Mette, M., Aufsatz, W., Jakowitsch, J., and Matzke, A. (1999) Host defenses to parasitic sequences and the evolution of epigenetic control mechanisms. Genetica 107, 271–287.

    Article  PubMed  CAS  Google Scholar 

  122. Sundararajan, P., Atkinson, P. W., and O’Brochta, D. A. (1999) Transposable element interactions in insects: cross mobilization of hobo and Hermes. Insect Molec. Biol. 8, 359–368.

    Article  CAS  Google Scholar 

  123. Zhu, Y., Dai, J., Fuerst, P. G., and Voytas, D. F. (2003) Controlling integration specificity of a yeast retrotransposon. Proc. Natl. Acad. Sci. USA 100, 5891–5895.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Miller, W.J., Capy, P. (2004). Mobile Genetic Elements as Natural Tools for Genome Evolution. In: Miller, W.J., Capy, P. (eds) Mobile Genetic Elements. Methods in Molecular Biology, vol 260. Humana Press. https://doi.org/10.1385/1-59259-755-6:001

Download citation

  • DOI: https://doi.org/10.1385/1-59259-755-6:001

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-007-6

  • Online ISBN: 978-1-59259-755-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics