Transposable Elements for Transgenesis and Insertional Mutagenesis in Vertebrates

A Contemporary Review of Experimental Strategies
  • Zoltán Ivics
  • Zsuzsanna Izsvák
Part of the Methods in Molecular Biology book series (MIMB, volume 260)

Abstract

Functional genomic analyses in vertebrate model systems, including fish, frogs, and mice, have greatly contributed to our understanding of embryonic development and human disease. However, new molecular tools and strategies are needed to meet the increasing demands of linking sequence information to gene function. Transposable elements (TEs) are very efficient at integrating into DNA, and are therefore useful vectors for transferring new genetic material into genomes. In particular, members of the Tc1/mariner superfamily of elements are able to transpose in species other than their hosts, and are therefore emerging tools for functional genomics in several organisms. This chapter describes strategies of using retrovirus vectors and DNA-based TEs for transgenesis and insertional mutagenesis in vertebrates, with special emphasis on the Sleeping Beauty (SB) element, a reconstructed Tc1/mariner-like transposon from fish. SB jumps efficiently in cells of diverse vertebrate species in culture, as well as in somatic and germline tissues of the mouse in vivo. Simple structure and easy laboratory handling of transposon vectors are coupled with efficient and stable transgene integration and persistent, long-term transgene expression by transposon-mediated gene transfer. These features all contribute to the usefulness of TEs as tools for vertebrate functional genomics, as well as for animal biotechnology and human gene therapy.

Key Words

Transgenesis insertional mutagenesis transposon transposition functional genomics gene expression gene tagging gene therapy 

References

  1. 1.
    International Human Genome Sequencing Consortium. (2001) Initial sequencing and analysis of the human genome. Nature 409, 860–921.CrossRefGoogle Scholar
  2. 2.
    Driever, W., Solnica-Krezel, L., Schier, A., Neuhauss, S., Maliki, J., Stemple, D., et al. (1996) A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123, 37–46.PubMedGoogle Scholar
  3. 3.
    Haffter, P., Granato, M., Brand, M., Mullins, M. C., Hammerschmidt, M., Kane, D. A., et al. (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123, 1–36.PubMedGoogle Scholar
  4. 4.
    Verma, I. M. and Somia, N. (1997) Gene therapy—Promises, problems and prospects. Nature 389, 239–242.PubMedCrossRefGoogle Scholar
  5. 5.
    Craig, N. L. (1995) Unity in transposition reactions. Science 270, 253–254.PubMedCrossRefGoogle Scholar
  6. 6.
    Amsterdam, A., Burgess, S., Golling, G., Chen, W., Sun, Z., Townsend, K., et al. (1999) A large-scale insertional mutagenesis screen in zebrafish. Genes Dev. 13, 2713–2724.PubMedCrossRefGoogle Scholar
  7. 7.
    Burns, J. C., Friedmann, T., Driever, W., Burrascano, M., and Yee, J. K. (1993) Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc. Natl. Acad. Sci. USA 90, 8033–8037.PubMedCrossRefGoogle Scholar
  8. 8.
    Lin, S., Gaiano, N., Culp, P., Burns, J. C., Friedmann, T., Yee, J. K., et al. (1994) Integration and germ-line transmission of a pseudotyped retroviral vector in zebrafish. Science 265, 666–669.PubMedCrossRefGoogle Scholar
  9. 9.
    Gaiano, N., Amsterdam, A., Kawakami, K., Allende, M., Becker, T., and Hopkins, N. (1996) Insertional mutagenesis and rapid cloning of essential genes in zebrafish. Nature 383, 829–832.PubMedCrossRefGoogle Scholar
  10. 10.
    Koga, A., Suzuki, M., Inagaki, H., Bessho, Y., and Hori, H. (1996) Transposable element in fish. Nature 383, 30.PubMedCrossRefGoogle Scholar
  11. 11.
    Koga, A., Shimada, A., Shima, A., Sakaizumi, M., Tachida, H., and Hori, H. (2000) Evidence for recent invasion of the medaka fish genome by the Tol2 transposable element. Genetics 155, 273–281.PubMedGoogle Scholar
  12. 12.
    Kawakami, K., Shima, A., and Kawakami, N. (2000) Identification of a functional transposase of the Tol2 element, an Ac-like element from the japanese medaka fish, and its transposition in the zebrafish germ lineage. Proc. Natl. Acad. Sci. USA 97, 11,403–11,408.PubMedCrossRefGoogle Scholar
  13. 13.
    Plasterk, R. H., Izsvák, Z., and Ivics, Z. (1999) Resident aliens: the Tc1/mariner superfamily of transposable elements. Trends Genet. 15, 326–332.PubMedCrossRefGoogle Scholar
  14. 14.
    Capy, P., Vitalis, R., Langin, T., Higuet, D., and Bazin, C. (1996) Relationships between transposable elements based upon the integrase-transposase domains: is there a common ancestor? J. Mol. Evol. 42, 359–368.PubMedCrossRefGoogle Scholar
  15. 15.
    Robertson, H. M. (1995) The Tc1-mariner superfamily of transposons in animals. J. Insect Physiol. 41, 99–105.CrossRefGoogle Scholar
  16. 16.
    Rio, D. C., Barnes, G., Laski, F. A., Rine, J., and Rubin, G. M. (1988) Evidence for Drosophila P element transposase activity in mammalian cells and yeast. J. Mol. Biol. 200, 411–415.PubMedCrossRefGoogle Scholar
  17. 17.
    Kidwell, M. G. (1992) Horizontal transfer of P elements and other short inverted repeat transposons. Genetica 86, 275–286.PubMedCrossRefGoogle Scholar
  18. 18.
    Ivics, Z., Izsvák, Z., Minter, A., and Hackett, P. B. (1996) Identification of functional domains and evolution of Tc1-like transposable elements. Proc. Natl. Acad. Sci. USA 93, 5008–5013.PubMedCrossRefGoogle Scholar
  19. 19.
    Vos, J. C., De Baere, I., and Plasterk, R. H. (1996) Transposase is the only nematode protein required for in vitro transposition of Tc1. Genes Dev. 10, 755–761.PubMedCrossRefGoogle Scholar
  20. 20.
    Lampe, D. J., Churchill, M. E., and Robertson, H. M. (1996) A purified mariner transposase is sufficient to mediate transposition in vitro. EMBO J. 15, 5470–5479.PubMedGoogle Scholar
  21. 21.
    Schouten, G. J., van Luenen, H. G., Verra, N. C., Valerio, D., and Plasterk, R. H. (1998) Transposon Tc1 of the nematode Caenorhabditis elegans jumps in human cells. Nucleic Acids Res. 26, 3013–3017.PubMedCrossRefGoogle Scholar
  22. 22.
    Zhang, L., Sankar, U., Lampe, D. J., Robertson, H. M., and Graham, F. L. (1998) The Himar1 mariner transposase cloned in a recombinant adenovirus vector is functional in mammalian cells. Nucleic Acids Res. 26, 3687–3693.PubMedCrossRefGoogle Scholar
  23. 23.
    Fischer, S. E. J., Wienholds, E., and Plasterk, R. H. A. (2001) Regulated transposition of a fish transposon in the mouse germ line. Proc. Natl. Acad. Sci. USA 98, 6759–6764.PubMedCrossRefGoogle Scholar
  24. 24.
    Klinakis, A. G., Zagoraiou, L., Vassilatis, D. K., and Savakis, C. (2000) Genome-wide insertional mutagenesis in human cells by the Drosophila mobile element Minos. EMBO Rep. 1, 416–421.PubMedCrossRefGoogle Scholar
  25. 25.
    Fadool, J. M., Hartl, D. L., and Dowling, J. E. (1998) Transposition of the mariner element from Drosophila mauritiana in zebrafish. Proc. Natl. Acad. Sci. USA 95, 5182–5186.PubMedCrossRefGoogle Scholar
  26. 26.
    Raz, E., van Luenen, H. G., Schaerringer, B., Plasterk, R. H. A., and Driever, W. (1998) Transposition of the nematode Caenorhabditis elegans Tc3 element in the zebrafish Danio rerio. Curr. Biol. 8, 82–88.PubMedCrossRefGoogle Scholar
  27. 27.
    Sherman, A., Dawson, A., Mather, C., Gilhooley, H., Li, Y., Mitchell, R., et al. (1998) Transposition of the Drosophila element mariner into the chicken germ line. Nat. Biotechnol. 16, 1050–1053.PubMedCrossRefGoogle Scholar
  28. 28.
    Radice, A. D., Bugaj, B., Fitch, D. H., and Emmons, S. W. (1994) Widespread occurrence of the Tc1 transposon family: Tc1-like transposons from teleost fish. Mol. Gen. Genet. 244, 606–612.PubMedCrossRefGoogle Scholar
  29. 29.
    Goodier, J. L. and Davidson, W. S. (1994) Tc1 transposon-like sequences are widely distributed in salmonids. J. Mol. Biol. 241, 26–34.PubMedCrossRefGoogle Scholar
  30. 30.
    Lam, W. L., Seo, P., Robison, K., Virk, S., and Gilbert, W. (1996) Discovery of amphibian Tc1-like transposon families. J. Mol. Biol. 257, 359–366.PubMedCrossRefGoogle Scholar
  31. 31.
    Lam, W. L., Lee, T. S., and Gilbert, W. (1996) Active transposition in zebrafish. Proc. Natl. Acad. Sci. USA 93, 10,870–10,875.PubMedCrossRefGoogle Scholar
  32. 32.
    Auge-Gouillou, C., Bigot, Y., Pollet, N., Hamelin, M. H., Meunier-Rotival, M., and Periquet, G. (1995) Human and other mammalian genomes contain transposons of the mariner family. FEBS Lett. 368, 541–546.PubMedCrossRefGoogle Scholar
  33. 33.
    Morgan, G. T. (1995) Identification in the human genome of mobile elements spread by DNA-mediated transposition. J. Mol. Biol. 254, 1–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Oosumi, T., Belknap, W. R., and Garlick, B. (1995) Mariner transposons in humans. Nature 378, 672.PubMedCrossRefGoogle Scholar
  35. 35.
    Ivics, Z., Hackett, P. B., Plasterk, R. H., and Izsvák, Z. (1997) Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91, 501–510.PubMedCrossRefGoogle Scholar
  36. 36.
    Doak, T. G., Doerder, F. P., Jahn, C. L., and Herrick, G. (1994) A proposed super-family of transposase genes: transposon-like elements in ciliated protozoa and a common “D35E” motif. Proc. Natl. Acad. Sci. USA 91, 942–946.PubMedCrossRefGoogle Scholar
  37. 37.
    Izsvák, Z., Ivics, Z., and Hackett, P. B. (1995) Characterization of a Tc1-like transposable element in zebrafish (Danio rerio). Mol. Gen. Genet. 247, 312–322.PubMedCrossRefGoogle Scholar
  38. 38.
    Izsvák, Z., Ivics, Z., and Plasterk, R. H. (2000) Sleeping Beauty, a wide hostrange transposon vector for genetic transformation in vertebrates. J. Mol. Biol. 302, 93–102.PubMedCrossRefGoogle Scholar
  39. 39.
    Yant, S. R., Meuse, L., Chiu, W., Ivics, Z., Izsvak, Z., and Kay, M. A. (2000) Somatic integration and long-term transgene expression in normal and haemophilic mice using a DNA transposon system. Nat. Genet. 25, 35–41.PubMedCrossRefGoogle Scholar
  40. 40.
    Luo, G., Ivics, Z., Izsvák, Z., and Bradley, A. (1998) Chromosomal transposition of a Tc1/mariner-like element in mouse embryonic stem cells. Proc. Natl. Acad. Sci. USA 95, 10,769–10,773.PubMedCrossRefGoogle Scholar
  41. 41.
    Montini, E., Held, P. K., Noll, M., Morcinek, N., Al-Dhalimy, M., Finegold, M., et al. (2002) In Vivo Correction of Murine Tyrosinemia Type I by DNA-Mediated Transposition. Mol. Ther. 6, 759–769.PubMedCrossRefGoogle Scholar
  42. 42.
    Yant, S. R., Ehrhardt, A., Mikkelsen, J. G., Meuse, L., Pham, T., and Kay, M. A. (2002) Transposition from a gutless adeno-transposon vector stabilizes transgene expression in vivo. Nat. Biotechnol. 20, 999–1005.PubMedCrossRefGoogle Scholar
  43. 43.
    Zagoraiou, L., Drabek, D., Alexaki, S., Guy, J. A., Klinakis, A. G., Langeveld, A., et al. (2001) In vivo transposition of Minos, a Drosophila mobile element, in mammalian tissues. Proc. Natl. Acad. Sci. USA 98, 11,474–11,478.PubMedCrossRefGoogle Scholar
  44. 44.
    Nasevicius, A. and Ekker, S. C. (2000) Effective targeted gene “knockdown” in zebrafish. Nat. Genet. 26, 216–220.PubMedCrossRefGoogle Scholar
  45. 45.
    Lavitrano, M., Camaioni, A., Fazio, V. M., Dolci, S., Farace, M. G., and Spadafora, C. (1989) Sperm cells as vectors for introducing foreign DNA into eggs: Genetic transformation of mice. Cell 57, 717–723.PubMedCrossRefGoogle Scholar
  46. 46.
    Müller, F., Ivics, Z., Erdélyi, F., Papp, T., Váradi, L., Horváth, L., et al. (1992) Introducing foreign genes into fish eggs by electroporated sperm as a carrier. Mol. Marine Biol. Biotech. 1, 276–281.Google Scholar
  47. 47.
    Kroll, K. L. and Amaya, E. (1996) Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation. Development 122, 3173–3183.PubMedGoogle Scholar
  48. 48.
    Dupuy, A. J., Fritz, S., and Largaespada, D. A. (2001) Transposition and gene disruption in the male germline of the mouse. Genesis 30, 82–88.PubMedCrossRefGoogle Scholar
  49. 49.
    Horie, K., Kuroiwa, A., Ikawa, M., Okabe, M., Kondoh, G., Matsuda, Y., et al. (2001) Efficient chromosomal transposition of a Tc1/mariner-like transposon Sleeping Beauty in mice. Proc. Natl. Acad. Sci. USA 98, 9191–9196.PubMedCrossRefGoogle Scholar
  50. 50.
    Scherdin, U., Rhodes, K., and Breindl, M. (1990) Transcriptionally active genome regions are preferred targets for retrovirus integration. J. Virol. 64, 907–912.PubMedGoogle Scholar
  51. 51.
    Bellen, H. J., O’Kane, C. J., Wilson, C., Grossniklaus, U., Pearson, R. K., and Gehring, W. J. (1989) P-element-mediated enhancer detection: a versatile method to study development in Drosophila. Genes Dev. 3, 1288–1300.PubMedCrossRefGoogle Scholar
  52. 52.
    Spradling, A. C., Stern, D. M., Kiss, I., Roote, J., Laverty, T., and Rubin, G. M. (1995) Gene disruptions using P transposable elements: an integral component of the Drosophila genome project. Proc. Natl. Acad. Sci. USA 92, 10,824–10,830.PubMedCrossRefGoogle Scholar
  53. 53.
    Vigdal, T. J., Kaufman, C. D., Izsvák, Z., Voytas, D. F., and Ivics, Z. (2002) Common physical properties of DNA affecting target site selection of Sleeping Beauty and other Tc1/mariner transposable elements. J. Mol. Biol. 323, 441–452.PubMedCrossRefGoogle Scholar
  54. 54.
    Bronchain, O. J., Hartley, K. O., and Amaya, E. (1999) A gene trap approach in Xenopus. Curr. Biol. 9, 1195–1198.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2004

Authors and Affiliations

  • Zoltán Ivics
    • 1
  • Zsuzsanna Izsvák
    • 1
  1. 1.Max Delbrück Center for Molecular MedicineBerlinGermany

Personalised recommendations