Skip to main content

Generation of Model Cell Lines Expressing Recombinant G-Protein-Coupled Receptors

  • Protocol
Receptor Signal Transduction Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 259))

  • 1818 Accesses

Abstract

The molecular cloning of the cDNA sequences encoding most G-protein-coupled receptors, including those from humans, allows their study in a variety of recombinant systems. In this respect, transfected mammalian cell lines constitute the most frequently used model for investigating the pharmacological and biochemical properties of these receptors. Several protocols have been described (based on the use of calcium phosphate precipitation, DEAE dextran, cationic lipids, and electroporation), allowing their transient or stable expression in diverse cell lines. This chapter gives a brief overview of the different techniques and provides methodology for the generation of transiently transfected cells and for selection, isolation and maintenance of stable transfected cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frielle, T., Collins, S., Daniel, K. W., Caron, M. G., Lefkowitz, R. J., and Kobilka, B. K. (1987) Cloning of the cDNA for the human beta 1-adrenergic receptor. Proc. Natl. Acad. Sci. USA 84, 7920–7924.

    Article  PubMed  CAS  Google Scholar 

  2. Kubo, T., Fukuda, K., Mikami, A., et al. (1986) Cloning, sequencing and expression of complementary DNA encoding the muscarinic acetylcholine receptor. Nature 323, 411–416.

    Article  PubMed  CAS  Google Scholar 

  3. Chung, F. Z., Lentes, K. U., Gocayne, J., et al. (1987) Cloning and sequence analysis of the human brain beta-adrenergic receptor. Evolutionary relationship to rodent and avian beta-receptors and porcine muscarinic receptors. FEBS Lett. 211, 200–206.

    Article  PubMed  CAS  Google Scholar 

  4. Brann, M. R., Buckley, N. J., Jones, S. V., and Bonner, T. I. (1987) Expression of a cloned muscarinic receptor in A9 L cells. Mol. Pharmacol. 32, 450–455.

    PubMed  CAS  Google Scholar 

  5. Fraser, C. M., Chung, F. Z., and Venter, J. C. (1987) Continuous high density expression of human β2-adrenergic receptors in a mouse cell line previously lacking beta-receptors. J. Biol. Chem. 262, 14,843–14,846.

    PubMed  CAS  Google Scholar 

  6. Kozak, M. (1987) At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J. Mol. Biol. 196, 947–950.

    Article  PubMed  CAS  Google Scholar 

  7. Kallal, L. and Benovic, J. L. (2000) Using green fluorescent proteins to stud G-protein-coupled receptor localization and trafficking. Trends Pharmacol. Sci. 21, 175–180.

    Article  PubMed  CAS  Google Scholar 

  8. Sambrook, J., Fritsch, E. F, and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  9. Ann, D. K., Hasegawa, J., Ko, J. L., Chen, S. T., Lee, N. M., and Loh, H. H. (1992) Specific reduction of 8-opioid receptor binding in transfected NG108-15 cells. J. Biol. Chem. 267, 7921–7926.

    PubMed  CAS  Google Scholar 

  10. DeBernardi, M. A., Seki, T., and Brooker, G. (1991) Inhibition of cAMP accumulation by intracellular calcium mobilization in C6-2B cells stably transfected with substance K receptor cDNA. Proc. Natl. Acad. Sci. USA 88, 9257–9261.

    Article  Google Scholar 

  11. McDonald, R. L., Balmforth, A. J., Palmer, A. C., Ball, S. G., Peers, C., and Vaughan, P. F (1995) The effect of the angiotensin II (AT1A) receptor stably transfected into human neuroblastoma SH-SY5Y cells on noradrenaline release and changes in intracellular calcium. Neurosci. Lett. 199, 115–118.

    Article  PubMed  CAS  Google Scholar 

  12. Sadot, E., Gurwitz, D., Barg, J., Behar, L., Ginzburg, I., and Fisher, A. (1996) Activation of m1 muscarinic acetylcholine receptor regulates τ phosphorylation in transfected PC12 cells. J. Neurochem. 66, 877–880.

    Article  PubMed  CAS  Google Scholar 

  13. Okusa, M. D., Huang, L., Momose-Hotokezaka, A., Huynh, L. P., and Mangrum, A. J. (1997) Regulation of adenylyl cyclase in polarized renal epithelial cells by G protein-coupled receptors. Am. J. Physiol. 273, F883–F891.

    PubMed  CAS  Google Scholar 

  14. Becker, B. N., Cheng, H. F., Burns, K. D., and Harris, R. C. (1995) Polarized rabbit type 1 angiotensin II receptors manifest differential rates of endocytosis and recycling. Am. J. Physiol. 269, C1048–C1056.

    PubMed  CAS  Google Scholar 

  15. Schulein, R., Lorenz, D., Oksche, A., et al. (1998) Polarized cell surface expression of the green fluorescent protein-tagged vasopressin V2 receptor in Madin Darby canine kidney cells. FEBS Lett. 441, 170–176.

    Article  PubMed  CAS  Google Scholar 

  16. Jolimay, N., Franck, L., Langlois, X., Hamon, M., and Darmon, M. (2000) Dominant role of the cytosolic C-terminal domain of the rat 5-HT1B receptor in axonal-apical targeting. J. Neurosci. 20, 9111–9118.

    PubMed  CAS  Google Scholar 

  17. Ango, F., Albani-Torregrossa, S., Joly, C., et al. (1999) A simple method to transfer plasmid DNA into neuronal primary cultures: functional expression of the mGlu5 receptor in cerebellar granule cells. Neuropharmacology 38, 793–803.

    Article  PubMed  CAS  Google Scholar 

  18. Nicot, A. and DiCicco-Bloom, E. (2001) Regulation of neuroblast mitosis is determined by PACAP receptor isoform expression. Proc. Natl. Acad. Sci. USA 98, 4758–4763.

    Article  PubMed  CAS  Google Scholar 

  19. Slack, R. S. and Miller, F. D. (1996) Viral vectors for modulating gene expression in neurons. Curr. Opin. Neurobiol. 6, 576–583.

    Article  PubMed  CAS  Google Scholar 

  20. Holter, W., Fordis, C. M., and Howard, B. H. (1989) Efficient gene transfer by sequential treatment of mammalian cells with DEAE-dextran and deoxyribonucleic acid. Exp. Cell Res. 184, 546–551.

    Article  PubMed  CAS  Google Scholar 

  21. Graham, F. L. and van der Eb, A. J. (1973) A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52, 456–467.

    Article  PubMed  CAS  Google Scholar 

  22. Vaheri, A. and Pagano, J. S. (1965) Infectious poliovirus RNA: a sensitive method of assay. Virology 27, 434–436.

    Article  PubMed  CAS  Google Scholar 

  23. Andreason, G. L. and Evans, G. A. (1988) Introduction and expression of DNA molecules in eukaryotic cells by electroporation. BioTechniques 6, 650–660.

    PubMed  CAS  Google Scholar 

  24. Koenig, J. A. (1999) Radioligand binding in intact cells. Methods Mol. Biol. 106, 89–98.

    PubMed  CAS  Google Scholar 

  25. Keen, M. (1997) Radioligand-binding methods for membrane preparations and intact cells. Methods Mol. Biol. 83, 1–24.

    PubMed  CAS  Google Scholar 

  26. Bylund, D. B. and Toews, M. L. (1993) Radioligand binding methods: practical guide and tips. Am. J. Physiol. 265, L421–L429.

    PubMed  CAS  Google Scholar 

  27. Sullivan, E., Tucker, E. M., and Dale, I. L. (1999) Measurement of [Ca2+] using the Fluorometric Imaging Plate Reader (FLIPR). Methods Mol. Biol. 114, 125–133.

    PubMed  CAS  Google Scholar 

  28. Gossen, M., Bonin, A. L., and Bujard, H. (1993) Control of gene activity in higher eukaryotic cells by prokaryotic regulatory elements. Trends Biochem. Sci. 18, 471–475.

    Article  PubMed  CAS  Google Scholar 

  29. Howe, J. R., Skryabin, B. V., Belcher, S. M., Zerillo, C. A., and Schmauss, C. (1995) The responsiveness of a tetracycline-sensitive expression system differs in different cell lines. J. Biol. Chem. 270, 14,168–14,174.

    Article  PubMed  CAS  Google Scholar 

  30. Van Craenenbroeck, K., Vanhoenacker, P., Leysen, J. E., and Haegeman, G. (2001) Evaluation of the tetracycline-and ecdysone-inducible systems for expression of neurotransmitter receptors in mammalian cells. Eur. J. Neurosci. 14, 968–976.

    Article  PubMed  Google Scholar 

  31. Choi, D. S., Wang, D. X., Tolbert, L., and Sadee, W. (2000) Basal signaling activity of human dopamine D2L receptor demonstrated with an ecdysone-inducible mammalian expression system. J. Neurosci. Methods 94, 217–225.

    Article  PubMed  CAS  Google Scholar 

  32. Minneman, K. P., Lee, D., Zhong, H., Berts, A., Abbott, K. L., and Murphy, T. J. (2000) Transcriptional responses to growth factor and G protein-coupled receptors in PC12 cells: comparison of α(1)-adrenergic receptor subtypes. J. Neurochem. 74, 2392–2400.

    Article  PubMed  CAS  Google Scholar 

  33. Hermans, E., Young, K. W., Challiss, R. A. J., and Nahorski, S. R. (1998) Effects of human type 1alpha metabotropic glutamate receptor expression level on phosphoinositide and Ca2+ signalling in an inducible cell expression system. J. Neurochem. 70, 1772–1775.

    Article  PubMed  CAS  Google Scholar 

  34. McDonald, L. J. and Mamrack, M. D. (1995) Phosphoinositide hydrolysis by phospholipase C modulated by multivalent cations La(3+), Al(3+), neomycin, polyamines, and melittin. J. Lipid. Mediat. Cell. Signal 11, 81–91.

    Article  PubMed  CAS  Google Scholar 

  35. Archer, S., Meng, S., Wu, J., Johnson, J., Tang, R., and Hodin, R. (1998) Butyrate inhibits colon carcinoma cell growth through two distinct pathways. Surgery 124, 248–253.

    Article  PubMed  CAS  Google Scholar 

  36. Cockett, M. I., Bebbington, C. R., and Yarranton, G. T. (1990) High level expression of tissue inhibitor of metalloproteinases in Chinese hamster ovary cells using glutamine synthetase gene amplification. Biotechnology 8, 662–667.

    Article  PubMed  CAS  Google Scholar 

  37. Gazi, L., Bobirnac, I., Danzeisen, M., et al. (1999) Receptor density as a factor governing the efficacy of the dopamine D-4 receptor ligands, L-745,870 and U-101958 at human recombinant D-4.4 receptors expressed in CHO cells. Br. J. Pharmacol. 128, 613–620.

    Article  PubMed  CAS  Google Scholar 

  38. Nash, M. S., Selkirk, J. V., Gaymer, C. E., Challiss, R. A. J., and Nahorski, S. R. (2001) Enhanced inducible mGlu1 alpha receptor expression in Chinese hamster ovary cells. J. Neurochem. 77, 1664–1667.

    Article  PubMed  CAS  Google Scholar 

  39. Pindon, A., van-Hecke, G., van-Gompel, P., Lesage, A. S., Leysen, J. E., and Jurzak, M. (2002) Differences in signal transduction of two 5-HT4 receptor splice variants: compound specificity and dual coupling with Gαs-and Gαi/o-proteins. Mol. Pharmacol. 61, 85–96.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Hermans, E. (2004). Generation of Model Cell Lines Expressing Recombinant G-Protein-Coupled Receptors. In: Willars, G.B., Challiss, R.A.J. (eds) Receptor Signal Transduction Protocols. Methods in Molecular Biology, vol 259. Humana Press. https://doi.org/10.1385/1-59259-754-8:137

Download citation

  • DOI: https://doi.org/10.1385/1-59259-754-8:137

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-329-9

  • Online ISBN: 978-1-59259-754-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics