Advertisement

Generation of Model Cell Lines Expressing Recombinant G-Protein-Coupled Receptors

  • Emmanuel Hermans
Part of the Methods in Molecular Biology book series (MIMB, volume 259)

Abstract

The molecular cloning of the cDNA sequences encoding most G-protein-coupled receptors, including those from humans, allows their study in a variety of recombinant systems. In this respect, transfected mammalian cell lines constitute the most frequently used model for investigating the pharmacological and biochemical properties of these receptors. Several protocols have been described (based on the use of calcium phosphate precipitation, DEAE dextran, cationic lipids, and electroporation), allowing their transient or stable expression in diverse cell lines. This chapter gives a brief overview of the different techniques and provides methodology for the generation of transiently transfected cells and for selection, isolation and maintenance of stable transfected cell lines.

Key Words

Butyrate calcium phosphate cationic phospholipids CHO cells COS cells DEAE dextran electroporation G-418 hygromycin B mammalian cells selection stable transfection transient 

References

  1. 1.
    Frielle, T., Collins, S., Daniel, K. W., Caron, M. G., Lefkowitz, R. J., and Kobilka, B. K. (1987) Cloning of the cDNA for the human beta 1-adrenergic receptor. Proc. Natl. Acad. Sci. USA 84, 7920–7924.PubMedCrossRefGoogle Scholar
  2. 2.
    Kubo, T., Fukuda, K., Mikami, A., et al. (1986) Cloning, sequencing and expression of complementary DNA encoding the muscarinic acetylcholine receptor. Nature 323, 411–416.PubMedCrossRefGoogle Scholar
  3. 3.
    Chung, F. Z., Lentes, K. U., Gocayne, J., et al. (1987) Cloning and sequence analysis of the human brain beta-adrenergic receptor. Evolutionary relationship to rodent and avian beta-receptors and porcine muscarinic receptors. FEBS Lett. 211, 200–206.PubMedCrossRefGoogle Scholar
  4. 4.
    Brann, M. R., Buckley, N. J., Jones, S. V., and Bonner, T. I. (1987) Expression of a cloned muscarinic receptor in A9 L cells. Mol. Pharmacol. 32, 450–455.PubMedGoogle Scholar
  5. 5.
    Fraser, C. M., Chung, F. Z., and Venter, J. C. (1987) Continuous high density expression of human β2-adrenergic receptors in a mouse cell line previously lacking beta-receptors. J. Biol. Chem. 262, 14,843–14,846.PubMedGoogle Scholar
  6. 6.
    Kozak, M. (1987) At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J. Mol. Biol. 196, 947–950.PubMedCrossRefGoogle Scholar
  7. 7.
    Kallal, L. and Benovic, J. L. (2000) Using green fluorescent proteins to stud G-protein-coupled receptor localization and trafficking. Trends Pharmacol. Sci. 21, 175–180.PubMedCrossRefGoogle Scholar
  8. 8.
    Sambrook, J., Fritsch, E. F, and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  9. 9.
    Ann, D. K., Hasegawa, J., Ko, J. L., Chen, S. T., Lee, N. M., and Loh, H. H. (1992) Specific reduction of 8-opioid receptor binding in transfected NG108-15 cells. J. Biol. Chem. 267, 7921–7926.PubMedGoogle Scholar
  10. 10.
    DeBernardi, M. A., Seki, T., and Brooker, G. (1991) Inhibition of cAMP accumulation by intracellular calcium mobilization in C6-2B cells stably transfected with substance K receptor cDNA. Proc. Natl. Acad. Sci. USA 88, 9257–9261.CrossRefGoogle Scholar
  11. 11.
    McDonald, R. L., Balmforth, A. J., Palmer, A. C., Ball, S. G., Peers, C., and Vaughan, P. F (1995) The effect of the angiotensin II (AT1A) receptor stably transfected into human neuroblastoma SH-SY5Y cells on noradrenaline release and changes in intracellular calcium. Neurosci. Lett. 199, 115–118.PubMedCrossRefGoogle Scholar
  12. 12.
    Sadot, E., Gurwitz, D., Barg, J., Behar, L., Ginzburg, I., and Fisher, A. (1996) Activation of m1 muscarinic acetylcholine receptor regulates τ phosphorylation in transfected PC12 cells. J. Neurochem. 66, 877–880.PubMedCrossRefGoogle Scholar
  13. 13.
    Okusa, M. D., Huang, L., Momose-Hotokezaka, A., Huynh, L. P., and Mangrum, A. J. (1997) Regulation of adenylyl cyclase in polarized renal epithelial cells by G protein-coupled receptors. Am. J. Physiol. 273, F883–F891.PubMedGoogle Scholar
  14. 14.
    Becker, B. N., Cheng, H. F., Burns, K. D., and Harris, R. C. (1995) Polarized rabbit type 1 angiotensin II receptors manifest differential rates of endocytosis and recycling. Am. J. Physiol. 269, C1048–C1056.PubMedGoogle Scholar
  15. 15.
    Schulein, R., Lorenz, D., Oksche, A., et al. (1998) Polarized cell surface expression of the green fluorescent protein-tagged vasopressin V2 receptor in Madin Darby canine kidney cells. FEBS Lett. 441, 170–176.PubMedCrossRefGoogle Scholar
  16. 16.
    Jolimay, N., Franck, L., Langlois, X., Hamon, M., and Darmon, M. (2000) Dominant role of the cytosolic C-terminal domain of the rat 5-HT1B receptor in axonal-apical targeting. J. Neurosci. 20, 9111–9118.PubMedGoogle Scholar
  17. 17.
    Ango, F., Albani-Torregrossa, S., Joly, C., et al. (1999) A simple method to transfer plasmid DNA into neuronal primary cultures: functional expression of the mGlu5 receptor in cerebellar granule cells. Neuropharmacology 38, 793–803.PubMedCrossRefGoogle Scholar
  18. 18.
    Nicot, A. and DiCicco-Bloom, E. (2001) Regulation of neuroblast mitosis is determined by PACAP receptor isoform expression. Proc. Natl. Acad. Sci. USA 98, 4758–4763.PubMedCrossRefGoogle Scholar
  19. 19.
    Slack, R. S. and Miller, F. D. (1996) Viral vectors for modulating gene expression in neurons. Curr. Opin. Neurobiol. 6, 576–583.PubMedCrossRefGoogle Scholar
  20. 20.
    Holter, W., Fordis, C. M., and Howard, B. H. (1989) Efficient gene transfer by sequential treatment of mammalian cells with DEAE-dextran and deoxyribonucleic acid. Exp. Cell Res. 184, 546–551.PubMedCrossRefGoogle Scholar
  21. 21.
    Graham, F. L. and van der Eb, A. J. (1973) A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52, 456–467.PubMedCrossRefGoogle Scholar
  22. 22.
    Vaheri, A. and Pagano, J. S. (1965) Infectious poliovirus RNA: a sensitive method of assay. Virology 27, 434–436.PubMedCrossRefGoogle Scholar
  23. 23.
    Andreason, G. L. and Evans, G. A. (1988) Introduction and expression of DNA molecules in eukaryotic cells by electroporation. BioTechniques 6, 650–660.PubMedGoogle Scholar
  24. 24.
    Koenig, J. A. (1999) Radioligand binding in intact cells. Methods Mol. Biol. 106, 89–98.PubMedGoogle Scholar
  25. 25.
    Keen, M. (1997) Radioligand-binding methods for membrane preparations and intact cells. Methods Mol. Biol. 83, 1–24.PubMedGoogle Scholar
  26. 26.
    Bylund, D. B. and Toews, M. L. (1993) Radioligand binding methods: practical guide and tips. Am. J. Physiol. 265, L421–L429.PubMedGoogle Scholar
  27. 27.
    Sullivan, E., Tucker, E. M., and Dale, I. L. (1999) Measurement of [Ca2+] using the Fluorometric Imaging Plate Reader (FLIPR). Methods Mol. Biol. 114, 125–133.PubMedGoogle Scholar
  28. 28.
    Gossen, M., Bonin, A. L., and Bujard, H. (1993) Control of gene activity in higher eukaryotic cells by prokaryotic regulatory elements. Trends Biochem. Sci. 18, 471–475.PubMedCrossRefGoogle Scholar
  29. 29.
    Howe, J. R., Skryabin, B. V., Belcher, S. M., Zerillo, C. A., and Schmauss, C. (1995) The responsiveness of a tetracycline-sensitive expression system differs in different cell lines. J. Biol. Chem. 270, 14,168–14,174.PubMedCrossRefGoogle Scholar
  30. 30.
    Van Craenenbroeck, K., Vanhoenacker, P., Leysen, J. E., and Haegeman, G. (2001) Evaluation of the tetracycline-and ecdysone-inducible systems for expression of neurotransmitter receptors in mammalian cells. Eur. J. Neurosci. 14, 968–976.PubMedCrossRefGoogle Scholar
  31. 31.
    Choi, D. S., Wang, D. X., Tolbert, L., and Sadee, W. (2000) Basal signaling activity of human dopamine D2L receptor demonstrated with an ecdysone-inducible mammalian expression system. J. Neurosci. Methods 94, 217–225.PubMedCrossRefGoogle Scholar
  32. 32.
    Minneman, K. P., Lee, D., Zhong, H., Berts, A., Abbott, K. L., and Murphy, T. J. (2000) Transcriptional responses to growth factor and G protein-coupled receptors in PC12 cells: comparison of α(1)-adrenergic receptor subtypes. J. Neurochem. 74, 2392–2400.PubMedCrossRefGoogle Scholar
  33. 33.
    Hermans, E., Young, K. W., Challiss, R. A. J., and Nahorski, S. R. (1998) Effects of human type 1alpha metabotropic glutamate receptor expression level on phosphoinositide and Ca2+ signalling in an inducible cell expression system. J. Neurochem. 70, 1772–1775.PubMedCrossRefGoogle Scholar
  34. 34.
    McDonald, L. J. and Mamrack, M. D. (1995) Phosphoinositide hydrolysis by phospholipase C modulated by multivalent cations La(3+), Al(3+), neomycin, polyamines, and melittin. J. Lipid. Mediat. Cell. Signal 11, 81–91.PubMedCrossRefGoogle Scholar
  35. 35.
    Archer, S., Meng, S., Wu, J., Johnson, J., Tang, R., and Hodin, R. (1998) Butyrate inhibits colon carcinoma cell growth through two distinct pathways. Surgery 124, 248–253.PubMedCrossRefGoogle Scholar
  36. 36.
    Cockett, M. I., Bebbington, C. R., and Yarranton, G. T. (1990) High level expression of tissue inhibitor of metalloproteinases in Chinese hamster ovary cells using glutamine synthetase gene amplification. Biotechnology 8, 662–667.PubMedCrossRefGoogle Scholar
  37. 37.
    Gazi, L., Bobirnac, I., Danzeisen, M., et al. (1999) Receptor density as a factor governing the efficacy of the dopamine D-4 receptor ligands, L-745,870 and U-101958 at human recombinant D-4.4 receptors expressed in CHO cells. Br. J. Pharmacol. 128, 613–620.PubMedCrossRefGoogle Scholar
  38. 38.
    Nash, M. S., Selkirk, J. V., Gaymer, C. E., Challiss, R. A. J., and Nahorski, S. R. (2001) Enhanced inducible mGlu1 alpha receptor expression in Chinese hamster ovary cells. J. Neurochem. 77, 1664–1667.PubMedCrossRefGoogle Scholar
  39. 39.
    Pindon, A., van-Hecke, G., van-Gompel, P., Lesage, A. S., Leysen, J. E., and Jurzak, M. (2002) Differences in signal transduction of two 5-HT4 receptor splice variants: compound specificity and dual coupling with Gαs-and Gαi/o-proteins. Mol. Pharmacol. 61, 85–96.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Emmanuel Hermans
    • 1
  1. 1.Laboratory of Experimental PharmacologyCatholic University of LouvainBrusselsBelgium

Personalised recommendations