Skip to main content

Construction of HSV-1 BACs and Their Use for Packaging of HSV-1-Based Amplicon Vectors

  • Protocol
Bacterial Artificial Chromosomes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 256))

  • 1100 Accesses

Abstract

Viruses are parasites that are strictly dependent on the host cell for replication. In general, the more complex a virus, the more complicated the network of interactions between the virus and the host. Many of these interactions are still unrevealed or not understood in detail. The generation of mutant viruses is an important strategy to obtain insights into the functional role of individual virus genes. A classical genetic approach used chemical mutagenesis to produce mutant viruses, however, identifying the mutation responsible for an observed phenotype and excluding second-site mutations is difficult. Development of site-directed mutagenesis of the herpes simplex virus type 1 (HSV-1) genome by homologous recombination allowed targeted mutation of individual HSV-1 genes (1,2). This technique remains laborious and, in some cases, impossible, because null mutants of genes that are essential for HSV-1 replication can only be produced on complementing cell lines (3). A more-efficient strategy for mutating HSV-1 was achieved by cloning the entire virus genome as a set of overlapping clones in cosmids. This allows the manipulation of specific virus genes on individual cosmid clones in Escherichia coli (E. coli) and their subsequent characterization. Cotransfection of this modified cosmid set into permissive cells leads to the reconstitution of recombinant HSV-1 genomes by homologous recombination (4). However, one problem of the cosmids is their instability, in particular those clones that contain repeated sequences. Therefore, alternative cloning vectors, which permit the amplification, manipulation, and characterization of large DNA fragments are used (5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mocarski, E. S., Post, L. E., and Roizman, B. (1980) Molecular engineering of the herpes simplex virus genome: insertion of a second L-S junction into the genome causes additional genome inversions. Cell 22, 243–255.

    Article  PubMed  CAS  Google Scholar 

  2. Post, L. E. and Roizman, B. (1981) A generalized technique for deletion of specific genes in large genomes: alpha gene 22 of herpes simplex virus 1 is not essential for growth. Cell 25, 227–232.

    Article  PubMed  CAS  Google Scholar 

  3. DeLuca, N. A., McCarthy, A. M., and Schaffer, P. A. (1985) Isolation and chracterization of deletion mutants of herpes simplex virus type 1 in the gene encoding immediate-early regulatory protein ICP4. J. Virol. 56, 558–570.

    PubMed  CAS  Google Scholar 

  4. Cunningham, C. and Davison, A. J. (1993) A cosmid-based system for constructing mutants of herpes simplex virus type 1. Virology 197, 116–124.

    Article  PubMed  CAS  Google Scholar 

  5. Shizuya, H., Birren, B., Kim, U. J., et al. (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-plasmid-based vector. Proc. Natl. Acad. Sci. USA 89, 8794–8797.

    Article  PubMed  CAS  Google Scholar 

  6. Messerle, M., Crnkovic, I., Hammerschmidt, W., Ziegler, H., and Koszinowski, U. H. (1997) Cloning and mutagenesis of a herpesvirus genome as an infectious bacterial artificial chromosome. Proc. Natl. Acad. Sci. USA 94, 14,759–14,763.

    Article  PubMed  CAS  Google Scholar 

  7. Delecluse, H. J., Hilsendegen, T, Pich, D., Zeidler, R., and Hammerschmidt, W. (1998) Propagation and recovery of intact, infectious Epstein-Barr virus from prokaryotic to human cells. Proc. Natl. Acad. Sci. USA 95, 8245–8250.

    Article  PubMed  CAS  Google Scholar 

  8. Stavropoulos, T. A. and Strathdee, C. A. (1998) An enhanced packaging system for helper-dependent herpes simplex virus vectors. J. Virol. 72, 7137–7143.

    PubMed  CAS  Google Scholar 

  9. Saeki, Y., Ichikawa, T, Saeki, A., et al. (1998) Herpes simplex virus type 1 DNA amplified as bacterial artificial chromosome in Escherichia coli: rescue of replication-competent virus progeny and packaging of amplicon vectors. Hum. Gene Ther 9, 2787–2794.

    Article  PubMed  CAS  Google Scholar 

  10. Horsburgh, B. C., Hubinette, M. M., Qiang, D., Mc Donald, M. L. E., and Tufaro, F. (1999) Allele replacement: an application that permits rapid manipulation of herpes simplex virus type 1 genomes. Gene Ther. 6, 922–930.

    Article  PubMed  CAS  Google Scholar 

  11. Smith, G. A. and Enquist, L. W. (1999) Construction and transposon mutagenesis in Escherichia coli of a full-length infectious clone of pseudorabies virus, an alpha herpesvirus. J. Virol. 73, 6405–6414.

    PubMed  CAS  Google Scholar 

  12. Borst, E. M., Hahn, G., Koszinowski, U. H., and Messerle, M. (1999) Cloning of the human cytomegalovirus (HCMV) genome as an infectious bacterial artificial chromosome in Escherichia coli: a new approach for construction of HCMV mutantsai. J. Virol. 73, 8320–8329.

    PubMed  CAS  Google Scholar 

  13. Spaete, R. R. and Frenkel, N. (1982) The herpes simplex virus amplicon: A new eucaryotic defective-virus cloning-amplifying vector. Cell 30, 305–310.

    Article  Google Scholar 

  14. Fraefel, C., Song, S., Lim, F., et al. (1996) Helper virus-free transfer of herpes simplex virus type 1 plasmid vectors into neural cells. J. Virol. 70, 7190–7197.

    PubMed  CAS  Google Scholar 

  15. Smith, I. L., Hardwicke, M. A., and Sandri-Goldin, R. M. (1992) Evidence that the herpes simplex virus immediate-early protein ICP27 acts post-transcriptionally during infection to regulate gene expression. Virology 186, 74–86.

    Article  PubMed  CAS  Google Scholar 

  16. Saeki, Y., Fraefel, C, Ichikawa, T., Breakefield, X. O., and Chiocca, A. (2001) Improved helper virus-free packaging system for HSV amplicon vectors using an ICP27-deleted, oversized HSV-1 DNA in a bacterial artificial chromosome. Mol. Ther. 3, 591–601.

    Article  PubMed  CAS  Google Scholar 

  17. Aboody-Guterman, K. S., Pechan, P. A., Rainov, N. G., et al. (1997) Green fluorescent protein as a reporter for retrovirus and helper virus-free HSV-1 amplicon vector-mediated gene transfer into neural cells in culture and in vivo. Neuroreport 8, 3801–3808.

    Article  PubMed  CAS  Google Scholar 

  18. Maniatis, T., Fritsch, E. F, and Sambrook, J. (1989) in Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 1.42–1.48.

    Google Scholar 

  19. Maniatis, T., Fritsch, E. F, and Sambrook, J. (1989) in Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 1.46.

    Google Scholar 

  20. Geller, A. I., and Breakefield, X. O. (1988) A defective HSV-1 vector expresses Escherichia coli beta-galactosidase in cultured peripheral neurons. Science 241, 1667–1669.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Heister, T.G.H., Vögtlin, A., Müller, L., Heid, I., Fraefel, C. (2004). Construction of HSV-1 BACs and Their Use for Packaging of HSV-1-Based Amplicon Vectors. In: Zhao, S., Stodolsky, M. (eds) Bacterial Artificial Chromosomes. Methods in Molecular Biology, vol 256. Humana Press. https://doi.org/10.1385/1-59259-753-X:241

Download citation

  • DOI: https://doi.org/10.1385/1-59259-753-X:241

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-989-6

  • Online ISBN: 978-1-59259-753-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics