Skip to main content

Large DNA Transformation in Plants

  • Protocol
Bacterial Artificial Chromosomes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 256))

  • 1040 Accesses

Abstract

Large DNA (>100 kb) transformation methods have been reported in tomato using Agrobacterium-mediated transformation (1) and tobacco using biolistic bombardment (2). Both methods used modified bacterial artificial chromosomes (BACs) such as BIBAC or pBACwich. BIBAC vector (used in tomato) is capable of transferring large DNA fragments from Agrobacterium into plants. pBACwich (used in tobacco) utilizes a Cre/lox site-specific recombination system to integrate large DNA fragments into plant chromosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hamilton, C. M., Frary, A., Lewis, C, and Tanksley, S. D. (1996) Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc. Natl. Acad. Sci. USA 93, 9975–9979.

    Article  PubMed  CAS  Google Scholar 

  2. Choi, S., Begum, D., Koshinsky, H., Ow, D. W., and Wing, R. A. (2000) A new approach for the identification and cloning of genes: the pBACwich system using Cre/lox site-specific recombination. Nucl. Acids Res. 28, E19.

    Article  PubMed  CAS  Google Scholar 

  3. Sanford, J. C, Smith, F. D., and Russell, J. A. (1993) Optimizing the biolistic process for different biological applications. Meth. Enzymol. 217, 483–509.

    Article  PubMed  CAS  Google Scholar 

  4. Seki, M., Iida, A., and Morikawa, H. (1999) Transient expression of the beta-glucuronidase gene in tissues of Arabidopsis thaliana by bombardment-mediated transformation. Mol. Biotechnol. 11, 251–255.

    Article  PubMed  CAS  Google Scholar 

  5. Solis, R., Takumi, S., Mori, N., and Nakamura, C. (1999) Ac-mediated transactivation of the Ds element in rice (Oryza sativa L.) cells as revealed by GUS assay. Hereditas 131, 23–31.

    Article  PubMed  CAS  Google Scholar 

  6. Drakakaki, G., Christou, P., and Stoger, E. (2000) Constitutive expression of soybean ferritin cDNA in transgenic wheat and rice results in increased iron levels in vegetative tissues but not in seeds. Transgenic Res. 9, 445–452.

    Article  PubMed  CAS  Google Scholar 

  7. Sivamani, E., Bahieldinl, A., Wraith, J. M., et al. (2000) Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci. 155, 1–9.

    Article  PubMed  CAS  Google Scholar 

  8. Menossi, M., Puigdomenech, P., and Martinez-Izquierdo, J. A. (2000) Improved analysis of promoter activity in biolistically transformed plant cells. Biotechniques 28, 54–58.

    PubMed  CAS  Google Scholar 

  9. Sawant, S. V., Singh, P. K., and Tuli, R. (2000) Pretreatment of microprojectiles to improve the delivery of DNA in plant transformation. Biotechniques 29, 246–248.

    PubMed  CAS  Google Scholar 

  10. Drescher, A., Ruf, S., Calsa, T. Jr., Carrer, H., and Bock, R. (2000) The two largest chloroplast genome-encoded open reading frames of higher plants are essential genes. Plant J. 22, 97–104.

    Article  PubMed  CAS  Google Scholar 

  11. Horser, C, Harding, R., and Dale, J. (2001) Banana bunchy top nanovirus DNA-1 encodes the ‘master’ replication initiation protein. J. Gen. Virol. 82, 459–464.

    PubMed  CAS  Google Scholar 

  12. Hoess, R., Abremski, K., Irwin, S., Kendall, M., and Mack, A. (1990) DNA specificity of the Cre recombinase resides in the 25 kDa carboxyl domain of the protein. J. Mol. Biol. 216, 873–882.

    Article  PubMed  CAS  Google Scholar 

  13. Albert, H., Dale, E. C, Lee, E., and Ow, D. W. (1995) Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J. 7, 649–659.

    Article  PubMed  CAS  Google Scholar 

  14. Medberry, S. L., Dale, E., Qin, M., and Ow, D. W. (1995) Intra-chromosomal rearrangements generated by Cre-lox site-specific recombination. Nucl. Acids Res. 23, 485–490.

    Article  PubMed  CAS  Google Scholar 

  15. Stuurman, J., de Vroomen, M. J., Nijkamp, H. J., and van Haaren, M. J. (1996) Single-site manipulation of tomato chromosomes in vitro and in vivo using Cre-lox site-specific recombination. Plant Mol. Biol. 32, 901–913.

    Article  PubMed  CAS  Google Scholar 

  16. Ow, D. W. and Medberry, S. L. (1995) Genome manipulation through site-specific recombination. Crit. Rev. Plant Sci. 14, 239–261.

    CAS  Google Scholar 

  17. Choi, S. and Wing, R. A. (2000) The construction of bacterial artificial chromosome (BAC) libraries in Plant Molecular Biology Manual (Gelvin, S. B., and Schilperoort, R. A., eds.), H5, Kluwer Academic, The Netherlands, pp. 1–28.

    Google Scholar 

  18. Choi, S. and Kim, U.-J. (2001) Construction of a Bacterial Artificial Chromosome Library in Methods in Molecular Biology: Genomics Protocols (Starkey, M. P., and Elaswarapu, R., eds.), 175, Humana, Totowa, NJ, pp. 57–68.

    Chapter  Google Scholar 

  19. Kim, U.-J., Birren, B. W., Slepak, T., et al. (1996) Construction and characterization of a human bacterial artificial chromosome library. Genomics 34, 213–218.

    Article  PubMed  CAS  Google Scholar 

  20. Koshinsky, H. A., Lee, E., and Ow, D. W. (2000) Cre-lox site-specific recombination between Arabidopsis and tobacco chromosomes. Plant J. 23, 715–722.

    Article  PubMed  CAS  Google Scholar 

  21. Chou, I., Kobayashi, J., Lee, E., Koshinsky, H., Medberry, S., and Ow, D. W. (1999) Chromosome rearrangements in Arabidopsis thaliana generated through Cre-lox site specific recombination. Plant Animal Genome VII, Jan. 17–21, San Diego, CA (Abs. P133).

    Google Scholar 

  22. Telenius, H., Carter, N. P., Bebb, C. E., Nordenskjold, M., Ponder, B. A., and Tunnacliffe, A. (1992) Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics 13, 718–725.

    Article  PubMed  CAS  Google Scholar 

  23. Wu, C, Zhu, S., Simpson, S., and de Jong, P. J. (1996) DOP-vector PCR: a method for rapid isolation and sequencing of insert termini from PAC clones. Nucl. Acids Res. 24, 2614–2615.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Choi, S. (2004). Large DNA Transformation in Plants. In: Zhao, S., Stodolsky, M. (eds) Bacterial Artificial Chromosomes. Methods in Molecular Biology, vol 256. Humana Press. https://doi.org/10.1385/1-59259-753-X:057

Download citation

  • DOI: https://doi.org/10.1385/1-59259-753-X:057

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-989-6

  • Online ISBN: 978-1-59259-753-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics