Retrofitting BACs With a Selectable Marker for Transfection

  • Zunde Wang
  • Angelika Longacre
  • Peter Engler
Part of the Methods in Molecular Biology book series (MIMB, volume 256)


Many functional studies require the transfection of bacterial artificial chromosome (BAC) clones into mammalian cells. Because most BAC vectors do not have a mammalian selection marker or do not have one suitable for all cell types, it is usually necessary to modify BAC clones to include a selection marker, a “retrofitting” process. Different BAC retrofitting strategies have been developed over the last 5 yr and are classified in the reference section (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11).


Embryonic Stem Cell Bacterial Artificial Chromosome Bacterial Artificial Chromosome Clone loxP Site Vector Fragment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Chatterjee, P. K. and Sternberg, N. L. (1996) Retrofitting high molecular weight DNA cloned in P1: introduction of reporter genes, markers selectable in mammalian cells and generation of nested deletions. Genet. Anal. 13, 33–42.PubMedGoogle Scholar
  2. 2.
    Mejia, J. E. and Monaco, A. P. (1997) Retrofitting vectors for Escherichia coli-based artificial chromosomes (PACs and BACs) with markers for transfection studies. Genome Res. 7, 179–186.PubMedCrossRefGoogle Scholar
  3. 3.
    Yang, X. W., Model, P., and Heintz, N. (1997) Homologous recombination based modification in Escherichia coli and germline transmission in transgenic mice of a bacterial artificial chromosome. Nat. Biotechnol. 15, 859–865.PubMedCrossRefGoogle Scholar
  4. 4.
    Hejna, J. A., Johnstone, P. L., Kohler, S. L., et al. (1998) Functional complementation by electroporation of human BACs into mammalian fibroblast cells. Nucl. Acids Res. 26, 1124–1125.PubMedCrossRefGoogle Scholar
  5. 5.
    Jessen, J. R., Meng, A., McFarlane, R. J., Paw, B. H., Zon, L. I., Smith, G. R., and Lin, S. (1998) Modification of bacterial artificial chromosomes through chi-stimulated homologous recombination and its application in zebrafish transgenesis. Proc. Natl. Acad. Sci. USA 95, 5121–5126.PubMedCrossRefGoogle Scholar
  6. 6.
    Kim, S. Y., Horrigan, S. K., Altenhofen, J. L., Arbieva, Z. H., Hoffman, R., and Westbrook, C. A. (1998) Modification of bacterial artificial chromosome clones using Cre recombinase: introduction of selectable markers for expression in eukaryotic cells. Genome Res. 8, 404–412.PubMedGoogle Scholar
  7. 7.
    Frengen, E., Weichenhan, D., Zhao, B., Osoegawa, K., van Geel, M., and de Jong, P. J. (1999) A modular, positive selection bacterial artificial chromosome vector with multiple cloning sites. Genomics 58, 250–253.PubMedCrossRefGoogle Scholar
  8. 8.
    Muyrers, J. P., Zhang, Y., Testa, G., and Stewart, A. F. (1999) Rapid modification of bacterial artificial chromosomes by ET-recombination. Nucl. Acids Res. 27, 1555–1557.PubMedCrossRefGoogle Scholar
  9. 9.
    Narayanan, K., Williamson, R., Zhang, Y., Stewart, A. F., and Ioannou, P. A. (1999) Efficient and precise engineering of a 200 kb beta-globin human/bacterial artificial chromosome in E. coli DH10B using an inducible homologous recombination system. Gene Ther. 6, 442–447.PubMedCrossRefGoogle Scholar
  10. 10.
    Wang, Z., Engler, P., Longacre, A., and Storb, U. (2001) An efficient method for high-fidelity BAC/PAC retrofitting with a selectable marker for mammalian cell transfection. Genome Res. 11, 137–141.PubMedCrossRefGoogle Scholar
  11. 11.
    Kaname, T. and Huxley, C. (2001) Simple and efficient vectors for retrofitting BACs and PACs with mammalian neor and EGFP marker genes. Gene 266, 147–153.PubMedCrossRefGoogle Scholar
  12. 12.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning. Second edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2004

Authors and Affiliations

  • Zunde Wang
    • 1
  • Angelika Longacre
    • 2
  • Peter Engler
    • 2
  1. 1.Genomics DivisionEpiGenX PharmaceuticalsSanta Barbara
  2. 2.Department of Molecular Genetics and Cell BiologyUniversity of ChicagoChicago

Personalised recommendations