Skip to main content

Standardized RT-PCR and the Standardized Expression Measurement Center

  • Protocol
Gene Expression Profiling

Abstract

Standardized reverse transcriptase polymerase chain reaction (StaRT-PCR) is a modification of the competitive template (CT) RT method described by Gilliland et al. StaRT-PCR allows rapid, reproducible, standardized, quantitative measurement of data for many genes simultaneously. An internal standard CT is prepared for each gene, cloned to generate enough for >109 assays and CTs for up to 1000 genes are mixed together. Each target gene is normalized to a reference gene to control for cDNA loaded in a standardized mixture of internal standards (SMIS) into the reaction. Each target gene and reference gene is measured relative to its respective internal standard within the SMIS. Because each target gene and reference gene is simultaneously measured relative to a known number of internal standard molecules in the SMIS, it is possible to report each gene expression measurement as a numerical value in units of target gene cDNA molecules/106 reference gene cDNA molecules. Calculation of data in this format allows for entry into a common databank, direct interexperimental comparison, and combination of values into interactive gene expression indices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marshall, E. (1999) Do-it-yourself gene watching. Science 286, 444–447.

    Article  PubMed  CAS  Google Scholar 

  2. Bustin, S. A. (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J. Mol. Endocrinol. 29, 23–39.

    Article  PubMed  CAS  Google Scholar 

  3. Gilliland, G., Perrin, S., Blanchard, K., and Bunn, H. F. (1990) Analysis of cytokine mRNA and DNA: Detection and quantitation by competitive polymerase chain reaction. Proc. Natl. Acad. Sci. USA 87, 2725–2729.

    Article  PubMed  CAS  Google Scholar 

  4. Apostolakos, M. J., Schuermann, W. H., Frampton, M. W., Utell, M. J., and Willey, J. C. (1993) Measurement of gene expression by multiplex competitive polymerase chain reaction. Anal. Biochem. 213, 277–284.

    Article  PubMed  CAS  Google Scholar 

  5. Willey, J. C., Crawford, E. L., and Jackson, C. M. (1998) Expression measurement of many genes simultaneously by quantitative RT-PCR using standardized mixtures of competitive templates. Am. J. Respir. Cell Mol. Biol. 19, 6–17.

    PubMed  CAS  Google Scholar 

  6. Crawford, E. L., Peters, G. J., Noordhuis, P., et al. (2001) Reproducible gene expression measurement among multiple laboratories obtained in a blinded study using standardized RT (StaRT)-PCR. Mol. Diagn. 6, 217–225.

    PubMed  CAS  Google Scholar 

  7. Crawford, E. L., Warner, K. A., Khuder, S. A., et al. (2002) Multiplex standardized RT-PCR for expression analysis of many genes in small samples. Biochem. Biophys. Res. Commun. 293, 509–516.

    Article  PubMed  CAS  Google Scholar 

  8. Crawford, E. L., Khuder, S. A., Durham, S. J., et al. (2000) Normal bronchial epithelial cell expression of glutathione transferase P1, glutathione transferase M3, and glutathione peroxidase is low in subjects with bronchogenic carcinoma. Cancer Res. 60, 1609–1618.

    PubMed  CAS  Google Scholar 

  9. DeMuth, J. P., Jackson, C. M., Weaver, D. A., et al. (1998) The gene expression index c-myc x E2F1/p21 is highly predictive of malignant phenotype in human bronchial epithelial cells. Am. J. Respir. Cell. Mol. Biol. 19, 18–24.

    Google Scholar 

  10. Mollerup, S., Ryberg, D., Hewer, A., Phillips, D. H., and Haugen, A. (1999) Sex differences in lung CYP1A1 expression and DNA adduct levels among lung cancer patients. Cancer Res. 59, 3317–3320.

    PubMed  CAS  Google Scholar 

  11. Rots, M. G., Willey, J. C., Jansen, G., et al. (2000) mRNA expression levels of methotrexate resistance-related proteins in childhood leukemia as determined by a standardized competitive template-based RT-PCR method. Leukemia 14, 2166–2175.

    Article  PubMed  CAS  Google Scholar 

  12. Rots, M. G., Pieters, R., Peters, G. J., et al. (1999) Circumvention of methotrexate resistance in childhood leukemia subtypes by rationally designed antifolates. Blood 94, 3121–3128.

    PubMed  CAS  Google Scholar 

  13. Allen, J. T., Knight, R. A., Bloor, C. A., and Spiteri, M. A. (1999) Enhanced insulin-like growth factor binding protein-related protein 2 (connective tissue growth factor) expression in patients with idiopathic pulmonary fibrosis and pulmonary sarcoidosis. Am. J. Respir. Cell. Mol. Biol. 21, 693–700.

    PubMed  CAS  Google Scholar 

  14. Loitsch, S. M., Kippenberger, S., Dauletbaev, N., Wagner, T. O., and Bargon, J. (1999) Reverse transcription-competitive multiplex PCR improves quantification of mRNA in clinical samples-application to the low abundance CFTR mRNA. Clin. Chem. 45, 619–624.

    PubMed  CAS  Google Scholar 

  15. Vondracek, M. T., Weaver, D. A., Sarang, Z., et al. (2002) Transcript profiling of enzymes involved in detoxification of xenobiotics and reactive oxygen in human normal and Simian virus 40 T antigen-immortalized oral keratinocytes. In. J. Cancer 99, 776–782.

    CAS  Google Scholar 

  16. Ding, C. and Cantor, C. R. (2003) A high-throughput gene expression analysis technique using competetive PCR and matrix-assisted laser desorption ionization time-of-flight MS. Proc. Natl. Acad. Sci. USA 100, 3059–3064.

    Article  PubMed  CAS  Google Scholar 

  17. Zhang, J., Day, I. N. M., and Byrne, C. D. (2002) A novel medium-throughput quantitative competitive PCR technology to simultaneously measure mRNA levels from multiple genes. Nucleic Acids Res. 30, e20.

    Article  Google Scholar 

  18. Becker-Andre, M. and Hahlbrock, K. (1989) Absolute messenger-RNA quantification using the polymerase chain-reaction (PCR) − a novel-approach by a PCR aided transcript titration assay (patty) nucleic acids research. Nucleic Acids Res. 17, 9437–9446.

    Article  PubMed  CAS  Google Scholar 

  19. Wang, A. M., Doyle, M. V., and Mark, D. F. (1989) Quantitation of mRNA by the polymerase chain reaction. Proc. Natl. Acad. Sci. USA 86, 9717–9972.

    Article  PubMed  CAS  Google Scholar 

  20. Zhang, J. and Byrne, C.D. (1997) A novel highly reproducible quantitative competitive RT-PCR system. J. Mol. Biol. 274, 338–352.

    Article  PubMed  CAS  Google Scholar 

  21. Zhou, N. M., Matthys, P., Polacek, C., et al. (1997) A competitive RT-PCR method for the quantitative analysis of cytokine mRNAs in mouse tissues. Cytokine 9, 212–218.

    Article  PubMed  CAS  Google Scholar 

  22. Lyon, E., Millson, A., Lowery, M. C., et al. (2001) Quantification of HER2/neu gene amplification by competitive PCR using fluorescent melting curve analysis. Clin. Chem. 47, 844–851.

    PubMed  CAS  Google Scholar 

  23. Hirano, T., Haque, M., and Utiyama, H. (2002) Theoretical and experimental dissection of competitive PCR for accurate quantification of DNA. Anal. Biochem. 303, 57–65.

    Article  PubMed  CAS  Google Scholar 

  24. Blaschke, V., Reich, K., Blaschke, S., Zipprich, S., and Neumann, C. (2002) Quantitative RT-PCR: comparing real-time LightCycler technology with quantitative competitive RT-PCR, Biochemica 1, 6–7, http://www.Roche-Applied-Science.com, http://www.roche-applied-science.com/biochemica/no1_02/PDF/p6.pdf

    Google Scholar 

  25. Livak, K. J. and Schmittgen, T. D. (2001) Analysis of related gene expression data using real-time quantitative RT-PCR and the 2 (-Delta Delta C(T)) method. Methods 25, 402–408.

    Article  PubMed  CAS  Google Scholar 

  26. Meijerink, J., Mandigers, C., van de Locht, L., et al. (2001) A novel method to compensate for different amplification efficiencies between patient DNA samples in quantitative real-time PCR. J. Mol. Diagn. 3, 55–61.

    Article  PubMed  CAS  Google Scholar 

  27. Akane, A., Matsuara, K., Nakamura, H., Takahashi, S., and Kimura, K. (1994) Identification of the heme compound co-purified with deoxyribonucleic acid (DNA) from blood stains, a major inhibitor of polymerase chain reaction (PCR) amplification. J. Forensic Sci. 39, 362–372.

    PubMed  CAS  Google Scholar 

  28. Zhu, Y. H., Lee, H. C., and Zhang, L. (2002) An examination of heme action in gene expression: Heme and heme deficiency affect the expression of diverse genes in erythroid K562 and neuronal PC12 cells. DNA Cell Biol. 21, 333–346.

    Article  PubMed  CAS  Google Scholar 

  29. Giulietti, A., Overbergh, L., Valckx, D., et al. (2001) An overview of real-time quantitative PCR: applications to quantify cytokine gene expression. Methods 25, 386–401.

    Article  PubMed  CAS  Google Scholar 

  30. Heid, C. A., Stevens, J., Livak, K. J., and Williams, P. M. (1996) A novel method for real time quantitative RT-PCR. Genome Res. 6, 986–994.

    Article  PubMed  CAS  Google Scholar 

  31. Winer, J., Jung, C. K. S., Shackel, I., and Williams, P. M. Development and validation of real-time quantitative reverse transcriptase-polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro. Anal. Biochem. 270, 41–49.

    Google Scholar 

  32. Bustin, S. A. (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J. Mol. Endorinol. 25, 169–193.

    Article  CAS  Google Scholar 

  33. Crawford, E. L., Warner, K. A., Weaver, D. A., and Willey, J. C. (2001) Quantitative end-point RT-PCR gene expression measurement using the Agilent 2100 Bioanalyzer and standardized RT-PCR. http://www.chem.agilent.com/temp/rad6A17F/00029012.pdf.

  34. Chomczynski, P. and Sacchi, N. (1993) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 62, 156–159

    Google Scholar 

  35. Willey, J. C., Coy, E. L., Frampton, M. W., et al. (1997) Quantitative RT-PCR measurement of cytochromes p450 1A1, 1B1, and 2B7, microsomal epoxide hydrolase, and NADPH oxidoreductase expression in lung cells of smokers and non-smokers. Am. J. Respir. Cell Mol. Biol. 17, 114–124.

    PubMed  CAS  Google Scholar 

  36. Celi, F. S., Zenilman, M. E., and Shuldiner, A. R. (1993) A rapid and versatile method to synthesize internal standards for competitive PCR. Nucleic Acids Res. 21, 1047.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Willey, J.C. et al. (2004). Standardized RT-PCR and the Standardized Expression Measurement Center. In: Shimkets, R.A. (eds) Gene Expression Profiling. Methods in Molecular Biology, vol 258. Humana Press. https://doi.org/10.1385/1-59259-751-3:13

Download citation

  • DOI: https://doi.org/10.1385/1-59259-751-3:13

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-220-9

  • Online ISBN: 978-1-59259-751-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics