Suppression Subtractive Hybridization

  • Denis V. Rebrikov
  • Sejal M. Desai
  • Paul D. Siebert
  • Sergey A. Lukyanov
Part of the Methods in Molecular Biology book series (MIMB, volume 258)

Abstract

Suppression subtractive hybridization (SSH) is a widely used method for separating DNA molecules that distinguish two closely related DNA samples. Two of the main SSH applications are cDNA subtraction and genomic DNA subtraction. In fact, SSH is one of the most powerful and popular methods for generating subtracted cDNA or genomic DNA libraries. The SSH method is based on a suppression PCR effect and combines normalization and subtraction in a single procedure. The normalization step equalizes the abundance of DNA fragments within the target population, and the subtraction step excludes sequences that are common to the populations being compared. This dramatically increases the probability of obtaining low-abundance differentially expressed cDNA or genomic DNA fragments, and simplifies analysis of the subtracted library. In our hands, the SSH technique has enriched over 1000-fold for rare sequences in a single round of subtractive hybridization.

Key Words

cDNA mRNA normalization subtractive hybridization 

References

  1. 1.
    Luk’ianov, S. A., Gurskaya, N. G., Luk’ianov, K. A., Tarabykin, V. S., and Sverdlov, E. D. (1994) Highly efficient subtractive hybridization of cDNA. J. Bioorgan. Chem. 20, 386–388.Google Scholar
  2. 2.
    Gurskaya, N. G., Diatchenko, L., Chenchik, A., et al. (1996) Equalizing cDNA subtraction based on selective suppression of polymerase chain reaction: cloning of Jurkat cell transcripts induced by phytohemaglutinin and phorbol 12-myristate 13-acetate. Anal. Biochem. 240, 90–97.PubMedCrossRefGoogle Scholar
  3. 3.
    Akopyants, N. S., Fradkov, A., Diatchenko, L., et al. (1998) PCR-based subtractive hybridization and differences in gene content among strains of Helicobacter pylori. Proc. Natl. Acad. Sci. USA 95, 13108–13113.PubMedCrossRefGoogle Scholar
  4. 4.
    Diatchenko, L., Lau, Y. F. C., Campbell, A. P., et al. (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. USA 93, 6025–6030.PubMedCrossRefGoogle Scholar
  5. 5.
    Lukyanov, K. A., Launer, G. A., Tarabykin, V. S., Zaraisky, A. G., and Lukyanov, S. A. (1995) Inverted terminal repeats permit the average length of amplified DNA fragments to be regulated during preparation of cDNA libraries by polymerase chain reaction. Anal. Biochem. 229, 198–202.PubMedCrossRefGoogle Scholar
  6. 6.
    Siebert, P. D., Chenchik, A., Kellogg, D. E., Lukyanov, K. A., and Lukyanov, S. A. (1995) An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res. 23, 1087–1088.PubMedCrossRefGoogle Scholar
  7. 7.
    Jin, H., Cheng, X., Diatchenko, L., Siebert, P. D., and Huang, C. C. (1997) Differential screening of a subtracted cDNA library: a method to search for genes preferentially expressed in multiple tissues. BioTechniques 23, 1084–1086.PubMedGoogle Scholar
  8. 8.
    Desai, S., Hill, J., Trelogan, S., Diatchenko, L., and Siebert, P. (2000) Identification of differentially expressed genes by suppression subtractive hybridization, in Functional Genomics (Hunt, S. P. and Livesey, F. J., eds.), Oxford University Press, 81–111.Google Scholar
  9. 9.
    Rebrikov, D. V., Britanova, O. V., Gurskaya, N. G., Lukyanov, K. A., Tarabykin, V. S., and Lukyanov, S. A. (2000) Mirror orientation selection (MOS): a method for eliminating false positive clones from libraries generated by suppression subtractive hybridization. Nucleic Acids Res. 28, e90.PubMedCrossRefGoogle Scholar
  10. 10.
    Gubler, U. and Hoffman, B. J. (1983) A simple and very efficient method for generating cDNA libraries. Gene 25, 263–269.PubMedCrossRefGoogle Scholar
  11. 11.
    Chenchik, A., Zhu, Y. Y., Diatchenko, L., Li, R., Hill, J., and Siebert, P. D. (1998) Generation and Use of High-Quality cDNA from Small Amounts of Total RNAby SMART PCR in Gene Cloning and Analysis by RT-PCR (Siebert, P. D. and Larrick, J. W., eds.), Molecular Laboratory Methods Number 1, 305–319.Google Scholar
  12. 12.
    Britten, R. J. and Davidson, E. H. (1985) In Nucleic Acid Hybridization-A Practical Approach (Hames, B. D. and Higgins, S., eds.), IRL Press, Oxford, 3–15.Google Scholar
  13. 13.
    Kellogg, D. E., Rybalkin, I., Chen, S., et al. (1994) TaqStart Antibody: “hot start” PCR facilitated by a neutralizing monoclonal antibody directed against Taq DNA polymerase. BioTechniques 16, 1134–1137.PubMedGoogle Scholar
  14. 14.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning, A Laboratory Manual. Cold Spring Harbor Lab., Cold Spring Harbor.Google Scholar
  15. 15.
    Ausubel, F. M., Brent, R., Kingston, R. E., et al. (1994) Current Protocols in Molecular Biology. Greene Publishing Associates and John Wiley & Sons, Inc., NY. 1, Ch. 2.4.Google Scholar
  16. 16.
    Chomczynski, P. and Sacchi, N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chlorophorm extraction. Anal. Biochem. 162, 156–159.PubMedCrossRefGoogle Scholar
  17. 17.
    Farrell, R. E., Jr. (1993) RNA Methodologies: A Guide for Isolation and Characterization. Academic, San Diego, CA.Google Scholar
  18. 18.
    Garcia-Fernandez, J., Marfany, G., Baguna, J., and Salo, E. (1993) Infiltration of mariner elements. Nature 364, 109–110.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2004

Authors and Affiliations

  • Denis V. Rebrikov
    • 1
  • Sejal M. Desai
    • 2
  • Paul D. Siebert
    • 2
  • Sergey A. Lukyanov
    • 1
  1. 1.Evrogen JSC and Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.BD Biosciences ClontechPalo Alto

Personalised recommendations