Skip to main content

Determination of NOS Activity Using Cyclic-GMP Formation

  • Protocol
Book cover Nitric Oxide Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 100))

  • 647 Accesses

Abstract

Nitric oxide (NO) produced from L-arginine during the activation of nitric oxide synthase(s) (NOS) in cells has pleiotropic effects and can behave as an intracellular modulator of cellular activity, as well as an intercellular messenger which diffuses from the originator cell to affect other “target” cells in a paracrine manner. NO effects on cells include adenine diphosphate (ADP)-ribosylation and nitrosation/nitration of proteins, and the activation of soluble guanylyl cyclase (GC-S) to form guanosine 3′,5′-cyclic monophosphate (cGMP) (1). GC-S contains heme as a prosthetic group, and NO apparently binds to the heme moiety and induces a conformational change in the enzyme which either dis-inhibits or activates the catalytic site (2). NO activation of GC-S has been demonstrated for numerous tissues. NO’s ability to activate GC-S and increase cGMP levels has been used to advantage to determine the production and levels of NO in originator cells as well as in target cells employed in the capacity of a bioassay. Whereas the half-life of NO is very short and the gas is difficult to measure during short periods of stimulation, in the presence of a phosphodiesterase inhibitor, the levels of cGMP produced in response to GC-S activation are stable and quantitative. Variations on the assay methods for NO-stimulated cGMP production include incubating the cytosolic fraction of cells with purified GC-S for quantitation of cGMP (3), prelabeling cells with [3H]guanosine for quantitation of [3H]cGMP (4), and adding cells or the supernatant fractions from cells stimulated for NOS activity to NO target cells, such as RFL-6 cells, which are rich in GC-S and respond in a sensitive manner to exogenously supplied NO, for quantitation of cGMP production (5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kerwin, Jr., J. F., Lancaster, J. R., and Feldman, P. L. (1995) Nitric oxide: a new paradigm for second messengers. J. Med. Chem. 38, 4342–4362.

    Article  Google Scholar 

  2. Schmidt, H. H. H. W., Lohmann, S. M., and Walter, U. (1993) The nitric oxide and cGMP signal transduction system: regulation and mechanism of action. Biochim. Biophys. Acta 1178, 153–175.

    Article  PubMed  CAS  Google Scholar 

  3. Mulsch, A. and Busse, R. (1991) Nitric oxide synthase in native and cultured endothelial cells—calcium/calmodulin and tetrahydrobiopterin are cofactors. J. Cardiovasc. Pharmacol. 17, S52–S56.

    Article  Google Scholar 

  4. Pou, S., Pou, W. S., Rosen, G. M., and El-Fakahany, E. E. (1991) N-Hydroxylamine is not an intermediate in the conversion of L-arginine to an activator of soluble guanylate cyclase in neuroblastoma N1E-115 cells. Biochem. J. 273, 547–552.

    PubMed  CAS  Google Scholar 

  5. Ishii, K., Chang, B., Kerwin, Jr., J. F., Huang, Z.-J., and Murad, F. (1990) N-Omega-nitro-L-arginine: a potent inhibitor of endothelium-derived relaxing factor formation. Eur. J. Pharmacol. 176, 219–223.

    Article  PubMed  CAS  Google Scholar 

  6. Steiner, A. L., Kipnis, D. M., Utiger, R., and Parker, C. (1969) Radioimmunoassay for the measurement of adenosine 3′,5′-cyclic phosphate. Proc. Natl. Acad. Sci. USA 64, 367–373.

    Article  PubMed  CAS  Google Scholar 

  7. Domino, S. E., Tubb, D. J., and Garbers, D. L. (1991) Assay of guanylyl cyclase catalytic activity. Methods Enzymol. 195, 345–355.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc.

About this protocol

Cite this protocol

Laychock, S.G. (1998). Determination of NOS Activity Using Cyclic-GMP Formation. In: Titheradge, M.A. (eds) Nitric Oxide Protocols. Methods in Molecular Biology™, vol 100. Humana Press. https://doi.org/10.1385/1-59259-749-1:93

Download citation

  • DOI: https://doi.org/10.1385/1-59259-749-1:93

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-470-9

  • Online ISBN: 978-1-59259-749-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics