Skip to main content

Measurement of NO Using Electron Paramagnetic Resonance

  • Protocol
Nitric Oxide Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 100))

  • 678 Accesses

Abstract

Absorption spectroscopy is based upon the principle that the absorption of radiation by a molecule involves the transition of the energy level from its ground state to an excited state. If we denote the energy difference as ΔE and the frequency of radiation as ν, then the relationship is expressed as

(1)

where ħ is the Planck’s constant. In optical-absorption spectroscopy, the absorption may be caused by π-electrons in proteins or conjugated double bonds. In infrared spectroscopy, the absorption may depend on bond angles and strength. In EPR, it is the magnetic interaction between the electron spin of a compound and the magnetic field applied by the instrument. In nuclear-magnetic resonance (NMR), the interaction between the nuclear spin and the applied field is detected. Table 1 shows approximate frequencies and wavelengths typical to these spectroscopic techniques. The exact wavelength (λ) can be calculated from the equation, c = νλ, where c is the light velocity (3 × 1010 cm/s).

Table 1 Approximate Frequencies and Wavelengths of Absorption Spectroscopy for Biologic Materials

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lancaster, J. R. II and Hibbs, J. B. II, (1990) EPR demonstration of iron-nitrosyl complex formation by cytotoxic activated macrophages. Proc. Natl. Acad. Sci. USA 87, 1223–1227.

    Article  PubMed  CAS  Google Scholar 

  2. Kosaka, H., Watanabe, M., Yoshihara, H., Harada, N., and Shiga, T. (1992) Detection of nitric oxide production in lipopolysaccharide-treated rats by ESR using carbon monoxide hemoglobin. Biochem. Biophys. Res. Comm. 184, 1119–1124.

    Article  PubMed  CAS  Google Scholar 

  3. Lin, R. F., Lin, T.-S., Tilton, R. G., and Cross, A. H. (1993) Nitric oxide localized to spinal cords of mice with experimental allergic encephalomyelitis: An electron paramagnetic resonance study. J. Exp. Med. 178, 643–648.

    Article  PubMed  CAS  Google Scholar 

  4. Kubrina, L. N., Caldwell, W. S., Mordvintcev, P. I., Malenkova, I. V., and Vanin, A. F. (1992) EPR evidence for nitric oxide production from guanidino nitrogens of L-arginine in animal tissues in vivo. Biochim. Biophys. Acta. 1099, 233–237

    Article  PubMed  CAS  Google Scholar 

  5. Voevodskaya, N. V. and Vanin, A. (1992) Gamma-irradiation potentiates L-arginine-dependent nitric oxide formation in mice. Biochem. Biophys. Res. Comm. 186, 1423–1428

    Article  PubMed  CAS  Google Scholar 

  6. Komarov, A., Mattson, D., Jones, M. M., Singh, P. K., and Lai, C.-S. (1993) In vivo spin trapping of nitric oxide in mice. Biochim. Biophys. Res. Commun. 195, 1191–1198

    Article  CAS  Google Scholar 

  7. Lai, C.-S. and Komarov, A. (1994) Spin trapping of nitric oxide produced in vivo in septic shock mice. FEBS Lett. 345, 120–124.

    Article  PubMed  CAS  Google Scholar 

  8. Kotake, Y., Tanigawa, T., Tanigawa, M., Ueno, I., Allen, D. R., and Lai, C.-S. (1996) Continuous monitoring of cellular nitric oxide generation by spin trapping with an iron-dithiocarbamate complex. Biochim Biophys. Acta. 1289, 362–368.

    PubMed  Google Scholar 

  9. Sato, S., Tominaga, T., Ohnishi, T., and Ohnishi, S. T. (1993) A spin trapping study of nitric oxide formation during bilateral carotid occlusion in the rat. Biochim. Biophys. Acta. 1181, 195–197.

    PubMed  CAS  Google Scholar 

  10. Tominaga, T., Sato, S., Ohnishi, T., and Ohnishi, S. T. (1993) Potentiation of nitric oxide formation following bilateral carotid occlusion and focal cerebral ischemia in the rat: In vivo detection of the nitric oxide radical by electron paramagnetic resonance spin trapping. Brain Res. 614, 342–346.

    Article  PubMed  CAS  Google Scholar 

  11. Sato, S., Tominaga, T., Ohnishi, T., and Ohnishi, S. T. (1994) EPR study on nitric oxide production during brain focal ischemia and reperfusion in the rat. Brain Res. 647, 91–96.

    Article  PubMed  CAS  Google Scholar 

  12. Tominaga, T., Sato, S., Ohnishi, T., and Ohnishi, S. T. (1994) EPR detection of nitric oxide produced during forebrain ischemia in the rat. J. Cereb. Blood Flow Metab. 14, 715–722.

    PubMed  CAS  Google Scholar 

  13. Sato, S., Tominaga, T., Ohnishi, T., and Ohnishi, S. T. (1995) Trapping of nitric oxide radicals in brain ischemia, in Membrane-linked Diseases (vol. 4) CNS Trauma: Experimental Techniques, (Ohnishi, S. T. and Ohnishi, T., eds.), CRC Press, Boca, Raton, FL, pp. 453–468.

    Google Scholar 

  14. Hooper, D. C., Ohnishi, T. S., Kean, R., Numagami, Y., Dietzschold, B., and Koprowski, H. (1995) Local nitric oxide production in viral and autoimmune diseases of the central nervous system. Proc. Natl. Acad. Sci. USA 92, 5312–5316.

    Article  PubMed  CAS  Google Scholar 

  15. Ischiropoulos, H., Beers, M., Ohnishi, S. T., Fisher, D., Garner, S. E., and Thom, S. R. (1996) Nitric oxide production and perivascular tyrosine nitration in brain after carbon monoxide poisoning in the rat. J. Clin. Invest. 97, 2260–2267.

    Article  PubMed  CAS  Google Scholar 

  16. Wizemann, T. M., Gardner, C. R., Quniones, S., Durham, S. K., Goller, N. L., Ohnishi, S. T., and Laskin, D. L. (1994) Production of nitric oxide and peroxynitrite in the lung following acute endotoxemia. J. Leukocyte Biol. 56, 759–768.

    PubMed  CAS  Google Scholar 

  17. Laskin, D. L, Rodriguez del Valle, M., Heck, D. E., Hwang, S.-M., Ohnishi, S. T., Durham, S. K., Goller, N. L., and Laskin, J. D. (1995) Hepatic nitric oxide production following acute endotoxemia in rats is mediated by increased inducible nitric oxide synthase gene expression. Hepatology 22, 223–234.

    PubMed  CAS  Google Scholar 

  18. Maragos, C. M., Morley, D., Wink, D. A., Dunams, T. M., Saavedra, J. E., Hoffman, A., Bove, A. A., Isaac, L., Hrabie, J. A., and Keefer, L. K. (1991) Complexes of NO with nucleophiles as agents for the controlled biological release of nitric oxide. J. Medicinal Chem. 34, 3242–3247.

    Article  CAS  Google Scholar 

  19. Kuppusamy, P., Chzhan, M., and Zweier, J. L. (1995) Development and optimization of 3-D spatial EPR imaging for biological organs and tissues. J. Magn. Resonance B, 105, 122–130.

    Article  Google Scholar 

  20. Kuppusamy, P., Chzhan, M., Wang, P., and Zweier, J. L. (1996) Three-dimensional gated EPR imaging of the beating heart: time-resolved measurements of free radical distribution during the cardiac contractile cycle. Magn. Reson. Med. 35, 323–328.

    Article  PubMed  CAS  Google Scholar 

  21. Kuppusamy, P., Ohnishi, S. T., Numagami, Y., Ohnishi, T., and Zweier, J. L. (1994) Three-dimensional imaging of nitric oxide production in the rat brain exposed to ischemia-hypoxia. J. Cereb. Blood Flow Metab. 15, 899–903.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc.

About this protocol

Cite this protocol

Ohnishi, S.T. (1998). Measurement of NO Using Electron Paramagnetic Resonance. In: Titheradge, M.A. (eds) Nitric Oxide Protocols. Methods in Molecular Biology™, vol 100. Humana Press. https://doi.org/10.1385/1-59259-749-1:129

Download citation

  • DOI: https://doi.org/10.1385/1-59259-749-1:129

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-470-9

  • Online ISBN: 978-1-59259-749-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics