Measurement of NO Using Electron Paramagnetic Resonance

  • S. Tsuyoshi Ohnishi
Part of the Methods in Molecular Biology™ book series (MIMB, volume 100)

Abstract

Absorption spectroscopy is based upon the principle that the absorption of radiation by a molecule involves the transition of the energy level from its ground state to an excited state. If we denote the energy difference as ΔE and the frequency of radiation as ν, then the relationship is expressed as where ħ is the Planck’s constant. In optical-absorption spectroscopy, the absorption may be caused by π-electrons in proteins or conjugated double bonds. In infrared spectroscopy, the absorption may depend on bond angles and strength. In EPR, it is the magnetic interaction between the electron spin of a compound and the magnetic field applied by the instrument. In nuclear-magnetic resonance (NMR), the interaction between the nuclear spin and the applied field is detected. Table 1 shows approximate frequencies and wavelengths typical to these spectroscopic techniques. The exact wavelength (λ) can be calculated from the equation, c = νλ, where c is the light velocity (3 × 1010 cm/s).
Table 1

Approximate Frequencies and Wavelengths of Absorption Spectroscopy for Biologic Materials

 

Transition frequency, n(Hz)

Wavelength, λ (cm)

UV absorption

1016

10−6 – 10−5

Visible absorption

1015

10−5 – 10−4

Infrared

1014 – 1013

10−4 – 10−2

EPR (microwave)

1011 – 109

10−1 – 101

NMR (radio frequency)

109 – 108

101 – 102

Keywords

Catheter Microwave Ischemia Foam Argon 

References

  1. 1.
    Lancaster, J. R. II and Hibbs, J. B. II, (1990) EPR demonstration of iron-nitrosyl complex formation by cytotoxic activated macrophages. Proc. Natl. Acad. Sci. USA 87, 1223–1227.PubMedCrossRefGoogle Scholar
  2. 2.
    Kosaka, H., Watanabe, M., Yoshihara, H., Harada, N., and Shiga, T. (1992) Detection of nitric oxide production in lipopolysaccharide-treated rats by ESR using carbon monoxide hemoglobin. Biochem. Biophys. Res. Comm. 184, 1119–1124.PubMedCrossRefGoogle Scholar
  3. 3.
    Lin, R. F., Lin, T.-S., Tilton, R. G., and Cross, A. H. (1993) Nitric oxide localized to spinal cords of mice with experimental allergic encephalomyelitis: An electron paramagnetic resonance study. J. Exp. Med. 178, 643–648.PubMedCrossRefGoogle Scholar
  4. 4.
    Kubrina, L. N., Caldwell, W. S., Mordvintcev, P. I., Malenkova, I. V., and Vanin, A. F. (1992) EPR evidence for nitric oxide production from guanidino nitrogens of L-arginine in animal tissues in vivo. Biochim. Biophys. Acta. 1099, 233–237PubMedCrossRefGoogle Scholar
  5. 5.
    Voevodskaya, N. V. and Vanin, A. (1992) Gamma-irradiation potentiates L-arginine-dependent nitric oxide formation in mice. Biochem. Biophys. Res. Comm. 186, 1423–1428PubMedCrossRefGoogle Scholar
  6. 6.
    Komarov, A., Mattson, D., Jones, M. M., Singh, P. K., and Lai, C.-S. (1993) In vivo spin trapping of nitric oxide in mice. Biochim. Biophys. Res. Commun. 195, 1191–1198CrossRefGoogle Scholar
  7. 7.
    Lai, C.-S. and Komarov, A. (1994) Spin trapping of nitric oxide produced in vivo in septic shock mice. FEBS Lett. 345, 120–124.PubMedCrossRefGoogle Scholar
  8. 8.
    Kotake, Y., Tanigawa, T., Tanigawa, M., Ueno, I., Allen, D. R., and Lai, C.-S. (1996) Continuous monitoring of cellular nitric oxide generation by spin trapping with an iron-dithiocarbamate complex. Biochim Biophys. Acta. 1289, 362–368.PubMedGoogle Scholar
  9. 9.
    Sato, S., Tominaga, T., Ohnishi, T., and Ohnishi, S. T. (1993) A spin trapping study of nitric oxide formation during bilateral carotid occlusion in the rat. Biochim. Biophys. Acta. 1181, 195–197.PubMedGoogle Scholar
  10. 10.
    Tominaga, T., Sato, S., Ohnishi, T., and Ohnishi, S. T. (1993) Potentiation of nitric oxide formation following bilateral carotid occlusion and focal cerebral ischemia in the rat: In vivo detection of the nitric oxide radical by electron paramagnetic resonance spin trapping. Brain Res. 614, 342–346.PubMedCrossRefGoogle Scholar
  11. 11.
    Sato, S., Tominaga, T., Ohnishi, T., and Ohnishi, S. T. (1994) EPR study on nitric oxide production during brain focal ischemia and reperfusion in the rat. Brain Res. 647, 91–96.PubMedCrossRefGoogle Scholar
  12. 12.
    Tominaga, T., Sato, S., Ohnishi, T., and Ohnishi, S. T. (1994) EPR detection of nitric oxide produced during forebrain ischemia in the rat. J. Cereb. Blood Flow Metab. 14, 715–722.PubMedGoogle Scholar
  13. 13.
    Sato, S., Tominaga, T., Ohnishi, T., and Ohnishi, S. T. (1995) Trapping of nitric oxide radicals in brain ischemia, in Membrane-linked Diseases (vol. 4) CNS Trauma: Experimental Techniques, (Ohnishi, S. T. and Ohnishi, T., eds.), CRC Press, Boca, Raton, FL, pp. 453–468.Google Scholar
  14. 14.
    Hooper, D. C., Ohnishi, T. S., Kean, R., Numagami, Y., Dietzschold, B., and Koprowski, H. (1995) Local nitric oxide production in viral and autoimmune diseases of the central nervous system. Proc. Natl. Acad. Sci. USA 92, 5312–5316.PubMedCrossRefGoogle Scholar
  15. 15.
    Ischiropoulos, H., Beers, M., Ohnishi, S. T., Fisher, D., Garner, S. E., and Thom, S. R. (1996) Nitric oxide production and perivascular tyrosine nitration in brain after carbon monoxide poisoning in the rat. J. Clin. Invest. 97, 2260–2267.PubMedCrossRefGoogle Scholar
  16. 16.
    Wizemann, T. M., Gardner, C. R., Quniones, S., Durham, S. K., Goller, N. L., Ohnishi, S. T., and Laskin, D. L. (1994) Production of nitric oxide and peroxynitrite in the lung following acute endotoxemia. J. Leukocyte Biol. 56, 759–768.PubMedGoogle Scholar
  17. 17.
    Laskin, D. L, Rodriguez del Valle, M., Heck, D. E., Hwang, S.-M., Ohnishi, S. T., Durham, S. K., Goller, N. L., and Laskin, J. D. (1995) Hepatic nitric oxide production following acute endotoxemia in rats is mediated by increased inducible nitric oxide synthase gene expression. Hepatology 22, 223–234.PubMedGoogle Scholar
  18. 18.
    Maragos, C. M., Morley, D., Wink, D. A., Dunams, T. M., Saavedra, J. E., Hoffman, A., Bove, A. A., Isaac, L., Hrabie, J. A., and Keefer, L. K. (1991) Complexes of NO with nucleophiles as agents for the controlled biological release of nitric oxide. J. Medicinal Chem. 34, 3242–3247.CrossRefGoogle Scholar
  19. 19.
    Kuppusamy, P., Chzhan, M., and Zweier, J. L. (1995) Development and optimization of 3-D spatial EPR imaging for biological organs and tissues. J. Magn. Resonance B, 105, 122–130.CrossRefGoogle Scholar
  20. 20.
    Kuppusamy, P., Chzhan, M., Wang, P., and Zweier, J. L. (1996) Three-dimensional gated EPR imaging of the beating heart: time-resolved measurements of free radical distribution during the cardiac contractile cycle. Magn. Reson. Med. 35, 323–328.PubMedCrossRefGoogle Scholar
  21. 21.
    Kuppusamy, P., Ohnishi, S. T., Numagami, Y., Ohnishi, T., and Zweier, J. L. (1994) Three-dimensional imaging of nitric oxide production in the rat brain exposed to ischemia-hypoxia. J. Cereb. Blood Flow Metab. 15, 899–903.Google Scholar

Copyright information

© Humana Press Inc. 1998

Authors and Affiliations

  • S. Tsuyoshi Ohnishi
    • 1
  1. 1.Philadelphia Biomedical Research InstituteKing of Prussia

Personalised recommendations