Skip to main content

Combination of Chemical and Enzymatic RNA Synthesis

  • Protocol
  • 1150 Accesses

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 252))

Abstract

The potential of standard in vitro transcription reactions can be dramatically expanded, if chemically synthesized low-mol-wt compounds are used as building blocks in combination with standard nucleotide 5′ triphosphates (NTPs). Short oligonucleotides that terminate in guanosine effectively compete with guanosine 5′ triphosphate (GTP) as starter building blocks, and they are incorporated at the 5′-end of transcripts. Applications include production of RNAs with “unfriendly 5′-ends” (they do not begin with G), variations of the 5′-sequence are possible with the same DNA template, site-specific insertion of nucleotide modifications, and addition of 5′-labels, such as fluorescein for detection or biotin for capture. Clearly, chemically synthesized, modified NTPs are inserted at internal sites. The combination with phosphorothioate linkages for detection has been developed into a powerful high-throughput method to study site-specific interference of modifications with RNA function.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Gaur, R. K. and Krupp, G. (1997) Preparation of templates for enzymatic RNA synthesis. Methods Mol. Biol. 74, 69–78.

    PubMed  CAS  Google Scholar 

  2. Pitulle, C., Kleineidam, R. G., Sproat, B., and Krupp, G. (1992) Initiator oligonucleotides for the combination of chemical and enzymatic RNA synthesis. Gene 112, 101–105.

    Article  PubMed  CAS  Google Scholar 

  3. Conrad, F., Hanne, A., Gaur, R. K., and Krupp, G. (1995) Enzymatic synthesis of 2′-modified nucleic acids: identification of important phosphate and ribose moieties in RNase P substrates. Nucleic Acids Res. 23, 1845–1853.

    Article  PubMed  CAS  Google Scholar 

  4. Strobel, S. A. and Shetty, K. (1997) Defining the chemical groups essential for Tetrahymena group I intron function by nucleotide analog interference mapping. Proc. Natl. Acad. Sci. USA 94, 2903–2908.

    Article  PubMed  CAS  Google Scholar 

  5. Fechter, P., Rudinger, J., Giege, R., and Theobald-Dietrich, A. (1998) Ribozyme processed tRNA transcripts with unfriendly internal promoter for T7 RNA polymerase: production and activity. FEBS Lett 436, 99–103.

    Article  PubMed  CAS  Google Scholar 

  6. Ferré-D’Amaré, A. R. and Doudna, J. A. (1996) Use of cis-and trans-ribozymes to remove 5′ and 3′ heterogeneities from milligrams of in vitro transcribed RNA. Nucleic Acids Res. 24, 977–978.

    Article  Google Scholar 

  7. Milligan, J. F. and Uhlenbeck, O. C. (1989) Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol. 180, 51–62.

    Article  PubMed  CAS  Google Scholar 

  8. Krupp, G., Kahle, D., Vogt, T., and Char, S. (1991) Sequence changes in both flanking sequences of a pre-tRNA influence the cleavage specificity of RNase P. J. Mol. Biol. 217, 637–648.

    Article  PubMed  CAS  Google Scholar 

  9. Kleineidam, R. G., Pitulle, C., Sproat, B., and Krupp, G. (1993) Efficient cleavage of pre-tRNAs by E. coli RNase P RNA requires the 2′-hydroxyl of the ribose at the cleavage site. Nucleic Acids Res. 21, 1097–1101.

    Article  PubMed  CAS  Google Scholar 

  10. Moore, M. J. and Sharp, P. A. (1992) Site-specific modification of pre-mRNA: the 2′-hydroxyl groups at the splice sites. Science 256, 992–997.

    Article  PubMed  CAS  Google Scholar 

  11. Gaur, R. K., Beigelman, L., Haeberli, P., and Maniatis, T. (2000) Role of adenine functional groups in the recognition of the 3′-splice-site AG during the second step of pre-mRNA splicing. Proc. Natl. Acad. Sci. USA 97, 115–120.

    Article  PubMed  CAS  Google Scholar 

  12. Singh, K. K., Rücker, T., Hanne, A., Parwaresch, R., and Krupp, G. (2000) Fluorescence polarization for monitoring ribozyme reactions in real time. BioTechniques 29, 344–351.

    PubMed  CAS  Google Scholar 

  13. Oyelere, A. K., Kardon, J. R., and Strobel, S. A. (2002) pK(a) perturbation in genomic Hepatitis Delta Virus ribozyme catalysis evidenced by nucleotide analogue interference mapping. Biochemistry 41, 3667–3675.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Gaur, R.K., Hanne, A., Krupp, G. (2004). Combination of Chemical and Enzymatic RNA Synthesis. In: Sioud, M. (eds) Ribozymes and siRNA Protocols. Methods in Molecular Biology™, vol 252. Humana Press. https://doi.org/10.1385/1-59259-746-7:009

Download citation

  • DOI: https://doi.org/10.1385/1-59259-746-7:009

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-226-1

  • Online ISBN: 978-1-59259-746-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics