Clinical Gene Therapy Research Utilizing Ribozymes

Application to the Treatment of HIV/AIDS
  • Frances K. Ngok
  • Ronald T. Mitsuyasu
  • Janet L. Macpherson
  • Maureen P. Boyd
  • Geoff P. Symonds
  • Rafael G. Amado
Part of the Methods in Molecular Biology™ book series (MIMB, volume 252)


Antiretroviral drug therapy can effectively reduce the viral load, and is associated with a degree of immune reconstitution in human immunodeficiency virus (HIV)-infected patients. However, the presence of a latent viral reservoir, the development of drug resistance, drug toxicity, and compliance problems are obstacles that impede full eradication of HIV through drug therapy. The cellular introduction of genetic elements that are capable of inhibiting HIV replication is conceptually appealing as a potential new treatment paradigm for aquired immunodeficiency syndrome (AIDS). In theory, this approach can lead to the development of regenerated hematopoiesis with cells that inhibit viral replication and are protected from the pathogenic effects of HIV. Ribozymes are catalytic RNA molecules that can efficiently and selectively cleave target RNA. By ex vivo retroviral transduction, we have introduced a HIV-1 tat gene-targeted ribozyme (RRz2) and a control construct (LNL6) into granulocyte-colony-stimulating factor (G-CSF) mobilized CD34+ hematopoietic progenitor cells (HPC). Transduced autologous CD34+ cells (an approximately equal mix of RRz2 and LNL6) were infused in 10 patients in this Phase I study. After a median follow-up of 2.5 yr, gene presence and expression were detected by a sensitive polymerase chain reaction (PCR) assay in a transduced-CD34+ cell dose-dependent manner. In this chapter, we describe general considerations related to HIV hematopoietic progenitor-cell gene therapy trial design, implementation, and safety, with an emphasis on the critical steps of this process, namely vector production and characterization, target-cell selection, transduction, final product release testing, and evaluation of vector presence.


Human Immunodeficiency Virus Long Terminal Repeat Hematopoietic Progenitor Cell Human Immunodeficiency Virus Replication Hammerhead Ribozyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Baltimore, D. (1988) Gene therapy. Intracellular immunization. Nature 335, 395,396.PubMedCrossRefGoogle Scholar
  2. 2.
    Bahner, I., Zhou, C., Yu, X. J., Hao, Q. L., Guatelli, J. C., and Kohn, D. B. (1993) Comparison of trans-dominant inhibitory mutant human immunodeficiency virus type 1 genes expressed by retroviral vectors in human T lymphocytes. J Virol 67, 3199–3207.PubMedGoogle Scholar
  3. 3.
    Buchschacher, G. L., Jr., Freed, E. O., and Panganiban, A. T. (1995) Effects of second-site mutations on dominant interference by a human immunodeficiency virus type 1 envelope glycoprotein mutant. J Virol 69, 1344–1348.PubMedGoogle Scholar
  4. 4.
    Fox, B. A., Woffendin, C., Yang, Z. Y., San, H., Ranga, U., Gordon, D., et al. (1995) Genetic modification of human peripheral blood lymphocytes with a transdominant negative form of Rev: safety and toxicity. Hum Gene Ther 6, 997–1004.PubMedCrossRefGoogle Scholar
  5. 5.
    Smythe, J. A., Sun, D., Thomson, M., Markham, P. D., Reitz, M. S., Jr., Gallo, R. C., and Lisziewicz, J. (1994) A Rev-inducible mutant gag gene stably transferred into T lymphocytes: an approach to gene therapy against human immunodeficiency virus type 1 infection. Proc. Natl. Acad. Sci. USA 91, 3657–3661.PubMedCrossRefGoogle Scholar
  6. 6.
    Marasco, W. A., Haseltine, W. A., and Chen, S. Y. (1993) Design, intracellular expression, and activity of a human anti-human immunodeficiency virus type 1 gp120 single-chain antibody. Proc. Natl. Acad. Sci. USA 90, 7889–7893.PubMedCrossRefGoogle Scholar
  7. 7.
    Mhashilkar, A. M., Bagley, J., Chen, S. Y., Szilvay, A. M., Helland, D. G., and Marasco, W. A. (1995) Inhibition of HIV-1 Tat-mediated LTR transactivation and HIV-1 infection by anti-Tat single chain intrabodies. EMBO J. 14, 1542–1551.PubMedGoogle Scholar
  8. 8.
    Sczakiel, G. and Pawlita, M. (1991) Inhibition of human immunodeficiency virus type 1 replication in human T cells stably expressing antisense RNA. J. Virol. 65, 468–472.PubMedGoogle Scholar
  9. 9.
    Rhodes, A. and James, W. (1991) Inhibition of heterologous strains of HIV by antisense RNA. AIDS 5, 145–151.PubMedCrossRefGoogle Scholar
  10. 10.
    Joshi, S., Van Brunschot, A., Asad, S., van der Elst, I., Read, S. E., and Bernstein, A. (1991) Inhibition of human immunodeficiency virus type 1 multiplication by antisense and sense RNA expression. J. Virol. 65, 5524–5530.PubMedGoogle Scholar
  11. 11.
    Sullenger, B. A., Gallardo, H. F., Ungers, G. E., and Gilboa, E. (1990) Overexpression of TAR sequences renders cells resistant to human immunodeficiency virus replication. Cell 63, 601–608.PubMedCrossRefGoogle Scholar
  12. 12.
    Lisziewicz, J., Sun, D., Smythe, J., Lusso, P., Lori, F., Louie, A., et al. (1993) Inhibition of human immunodeficiency virus type 1 replication by regulated expression of a polymeric Tat activation response RNA decoy as a strategy for gene therapy in AIDS. Proc. Natl. Acad. Sci. USA 90, 8000–8004.PubMedCrossRefGoogle Scholar
  13. 13.
    Gervaix, A., Li, X., Kraus, G., and Wong-Staal, F. (1997) Multigene antiviral vectors inhibit diverse human immunodeficiency virus type 1 clades. J. Virol. 71, 3048–3053.PubMedGoogle Scholar
  14. 14.
    Kohn, D. B., Bauer, G., Rice, C. R., Rothschild, J. C., Carbonaro, D. A., Valdez, P., et al. (1999) A clinical trial of retroviral-mediated transfer of a rev-responsive element decoy gene into CD34(+) cells from the bone marrow of human immunodeficiency virus-1-infected children. Blood 94, 368–371.PubMedGoogle Scholar
  15. 15.
    Sun, L. Q., Warrilow, D., Wang, L., Witherington, C., Macpherson, J., and Symonds, G. (1994) Ribozyme-mediated suppression of Moloney murine leukemia virus and human immunodeficiency virus type I replication in permissive cell lines. Proc. Natl. Acad. Sci. USA 91, 9715–9719.PubMedCrossRefGoogle Scholar
  16. 16.
    Sun, L. Q., Wang, L., Gerlach, W. L., and Symonds, G. (1995) Target sequence-specific inhibition of HIV-1 replication by ribozymes directed to tat RNA. Nucleic Acids Res 23, 2909–2913.PubMedCrossRefGoogle Scholar
  17. 17.
    Sun, L. Q., Pyati, J., Smythe, J., Wang, L., Macpherson, J., Gerlach, W., and Symonds, G. (1995) Resistance to human immunodeficiency virus type 1 infection conferred by transduction of human peripheral blood lymphocytes with ribozyme, antisense, or polymeric trans-activation response element constructs. Proc. Natl. Acad. Sci. USA 92, 7272–7276.PubMedCrossRefGoogle Scholar
  18. 18.
    Sarver, N., Cantin, E. M., Chang, P. S., Zaia, J. A., Ladne, P. A., Stephens, D. A., and Rossi, J. J. (1990) Ribozymes as potential anti-HIV-1 therapeutic agents. Science 247, 1222–1225.PubMedCrossRefGoogle Scholar
  19. 19.
    Weerasinghe, M., Liem, S. E., Asad, S., Read, S. E., and Joshi, S. (1991) Resistance to human immunodeficiency virus type 1 (HIV-1) infection in human CD4+ lymphocyte-derived cell lines conferred by using retroviral vectors expressing an HIV-1 RNA-specific ribozyme. J. Virol. 65, 5531–5534.PubMedGoogle Scholar
  20. 20.
    Yu, M., Ojwang, J., Yamada, O., Hampel, A., Rapapport, J., Looney, D., and Wong-Staal, F. (1993) A hairpin ribozyme inhibits expression of diverse strains of human immunodeficiency virus type 1. Proc. Natl. Acad. Sci. USA 90, 6340–6344.PubMedCrossRefGoogle Scholar
  21. 21.
    Morgan, R. A. and Walker, R. (1996) Gene therapy for AIDS using retroviral mediated gene transfer to deliver HIV-1 antisense TAR and transdominant Rev protein genes to syngeneic lymphocytes in HIV-1 infected identical twins. Hum. Gene Ther. 7, 1281–1306.PubMedCrossRefGoogle Scholar
  22. 22.
    Amado, R. G., Mitsuyasu, R. T., Symonds, G., Rosenblatt, J. D., Zack, J., Sun, L. Q., et al. (1999) A phase I trial of autologous CD34+ hematopoietic progenitor cells transduced with an anti-HIV ribozyme. Hum. Gene Ther. 10, 2255–2270.PubMedCrossRefGoogle Scholar
  23. 23.
    Cooper, D., Penny, R., Symonds, G., Carr, A., Gerlach, W., Sun, L. Q., and Ely, J. (1999) A marker study of therapeutically transduced CD4+ peripheral blood lymphocytes in HIV discordant identical twins. Hum. Gene Ther. 10, 1401–1421.PubMedCrossRefGoogle Scholar
  24. 24.
    Ranga, U., Woffendin, C., Verma, S., Xu, L., June, C. H., Bishop, D. K., and Nabel, G. J. (1998) Enhanced T cell engraftment after retroviral delivery of an antiviral gene in HIV-infected individuals. Proc. Natl. Acad. Sci. USA 95, 1201–1206.PubMedCrossRefGoogle Scholar
  25. 25.
    Sun, L. Q., Gerlach, W. L., and Symonds, G. (1998) The design, production and validation of an anti-HIV type1 ribozyme, in Therapeutic Application of Ribozymes, volume 11, Humana Press, Totowa, NJ, pp. 51–64.CrossRefGoogle Scholar
  26. 26.
    Klebba, C., Ottmann, O. G., Scherr, M., Pape, M., Engels, J. W., Grez, M., et al. (2000) Retrovirally expressed anti-HIV ribozymes confer a selective survival advantage on CD4+ T cells in vitro. Gene Ther. 7, 408–416.PubMedCrossRefGoogle Scholar
  27. 27.
    Wang, L., Witherington, C., King, A., Gerlach, W. L., Carr, A., Penny, R., et al. (1998) Preclinical characterization of an anti-tat ribozyme for therapeutic application. Hum. Gene Ther. 9, 1283–1291.PubMedCrossRefGoogle Scholar
  28. 28.
    Jackson, W. H., Jr., Moscoso, H., Nechtman, J. F., Galileo, D. S., Garver, F. A., and Lanclos, K. D. (1998) Inhibition of HIV-1 replication by an anti-tat hammerhead ribozyme. Biochem Biophys Res Commun 245, 81–84.PubMedCrossRefGoogle Scholar
  29. 29.
    Koizumi, M., Ozawa, Y., Yagi, R., Nishigaki, T., Kaneko, M., Oka, S., et al. (1995) Design and anti-HIV-1 activity of ribozymes that cleave HIV-1 LTR. Nucleic Acids Symp. Ser. 34, 125,126.Google Scholar
  30. 30.
    Chen, C. J., Banerjea, A. C., Harmison, G. G., Haglund, K., and Schubert, M. (1992) Multitarget-ribozyme directed to cleave at up to nine highly conserved HIV-1 env RNA regions inhibits HIV-1 replication—potential effectiveness against most presently sequenced HIV-1 isolates. Nucleic Acids Res. 20, 4581–4589.PubMedCrossRefGoogle Scholar
  31. 31.
    Yu, M., Poeschla, E., Yamada, O., Degrandis, P., Leavitt, M. C., Heusch, M., Yees, J. K., Wong-Staal, F., and Hampel, A. (1995) In vitro and in vivo characterization of a second functional hairpin ribozyme against HIV-1. Virology 206, 381–386.PubMedCrossRefGoogle Scholar
  32. 32.
    Hohaus, S., Goldschmidt, H., Ehrhardt, R., and Haas, R. (1993) Successful autografting following myeloablative conditioning therapy with blood stem cells mobilized by chemotherapy plus rhG-CSF. Exp. Hematol. 21, 508–514.PubMedGoogle Scholar
  33. 33.
    Quesenberry, P. and Levitt, L. (1979) Hematopoietic stem cells. N. Engl. J. Med. 301, 755–761.PubMedCrossRefGoogle Scholar
  34. 34.
    Srour, E. F., Brandt, J. E., Briddell, R. A., Leemhuis, T., van Besien, K., and Hoffman, R. (1991) Human CD34+ HLA-DR-bone marrow cells contain progenitor cells capable of self-renewal, multilineage differentiation, and long-term in vitro hematopoiesis. Blood Cells 17, 287–295.PubMedGoogle Scholar
  35. 35.
    Lowry, P. A. and Tabbara, I. A. (1992) Peripheral hematopoietic stem cell transplantation: current concepts. Exp. Hematol. 20, 937–942.PubMedGoogle Scholar
  36. 36.
    Andrews, R. G., Singer, J. W., and Bernstein, I. D. (1986) Monoclonal antibody 12-8 recognizes a 115-kd molecule present on both unipotent and multipotent hematopoietic colony-forming cells and their precursors. Blood 67, 842–845.PubMedGoogle Scholar
  37. 37.
    Slobod, K. S., Bennett, T. A., Freiden, P. J., Kechli, A. M., Howlett, N., Flynn, P. M., et al. (1996) Mobilization of CD34+ progenitor cells by granulocyte colony-stimulating factor in human immunodeficiency virus type 1-infected adults. Blood 88, 3329–3335.PubMedGoogle Scholar
  38. 38.
    De Luca, A., Teofili, L., Antinori, A., Iovino, M. S., Mencarini, P., Visconti, E., et al. (1993) Haemopoietic CD34+ progenitor cells are not infected by HIV-1 in vivo but show impaired clonogenesis. Br. J. Haematol. 85, 20–24.PubMedCrossRefGoogle Scholar
  39. 39.
    Miller, D. G., Adam, M. A., and Miller, A. D. (1990) Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol. Cell Biol. 10, 4239–4242.PubMedGoogle Scholar
  40. 40.
    Amado, R. G., Symonds, G., Jamieson, B. D., Zhao, G., Rosenblatt, J. D., and Zack, J. A. (1998) Effects of megakaryocyte growth and development factor on survival and retroviral transduction of T lymphoid progenitor cells. Hum. Gene Ther. 9, 173–183.PubMedCrossRefGoogle Scholar
  41. 41.
    Williams, D. A. and Moritz, T. (1994) Umbilical cord blood stem cells as targets for genetic modification: new therapeutic approaches to somatic gene therapy. Blood Cells 20, 504–515.PubMedGoogle Scholar
  42. 42.
    Hanenberg, H., Hashino, K., Konishi, H., Hock, R. A., Kato, I., and Williams, D. A. (1997) Optimization of fibronectin-assisted retroviral gene transfer into human CD34+ hematopoietic cells. Hum. Gene Ther. 8, 2193–2206.PubMedCrossRefGoogle Scholar
  43. 43.
    Malech, H. L., Maples, P. B., Whiting-Theobald, N., Linton, G. F., Sekhsaria, S., Vowells, S. J., Li, F., Miller, J. A., et al. (1997) Prolonged production of NADPH oxidase-corrected granulocytes after gene therapy of chronic granulomatous disease. Proc. Natl. Acad. Sci. USA 94, 12,133–12,138.PubMedCrossRefGoogle Scholar
  44. 44.
    Bauer, T. R., Schwartz, B. R., Liles, W. C., Ochs, H. D., and Hickstein, D. D. (1998) Retroviral-mediated gene transfer of the leukocyte integrin CD18 into peripheral blood CD34+ cells derived from a patient with leukocyte adhesion deficiency type 1. Blood 91, 1520–1526.PubMedGoogle Scholar
  45. 45.
    Rosenzweig, M., MacVittie, T. J., Harper, D., Hempel, D., Glickman, R. L., Johnson, R. P., et al. (1999) Efficient and durable gene marking of hematopoietic progenitor cells in nonhuman primates after nonablative conditioning. Blood 94, 2271–2286.PubMedGoogle Scholar
  46. 46.
    Kohn, D. B., Hershfield, M. S., Carbonaro, D., Shigeoka, A., Brooks, J., Smogorzewska, E. M., et al. (1998) T lymphocytes with a normal ADA gene accumulate after transplantation of transduced autologous umbilical cord blood CD34+ cells in ADA-deficient SCID neonates. Nat. Med. 4, 775–780.PubMedCrossRefGoogle Scholar
  47. 47.
    Cavazzana-Calvo, M., Hacein-Bey, S., de Saint Basile, G., Gross, F., Yvon, E., Nusbaum, P., et al. (2000) Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288, 669–672.PubMedCrossRefGoogle Scholar
  48. 48.
    Hacein-Bey-Abina, S., Le Deist, F., Carlier, F., Bouneaud, C., Hue, C., De Villartay, J. P., et al. (2002) Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N. Engl. J. Med. 346, 1185–1193.PubMedCrossRefGoogle Scholar
  49. 49.
    Bomberger, C., Singh-Jairam, M., Rodey, G., Guerriero, A., Yeager, A. M., Fleming, W. H., et al. (1998) Lymphoid reconstitution after autologous PBSC transplantation with FACS-sorted CD34+ hematopoietic progenitors. Blood 91, 2588–2600.PubMedGoogle Scholar
  50. 50.
    Dunbar, C. E., Seidel, N. E., Doren, S., Sellers, S., Cline, A. P., Metzger, M. E., Agricola, B. A., et al. (1996) Improved retroviral gene transfer into murine and Rhesus peripheral blood or bone marrow repopulating cells primed in vivo with stem cell factor and granulocyte colony-stimulating factor. Proc. Natl. Acad. Sci. USA 93, 11,871–11,876.PubMedCrossRefGoogle Scholar
  51. 51.
    Nachbaur, D., Fink, F. M., Nussbaumer, W., Gachter, A., Kropshofer, G., Ludescher, C., and Niederwieser, D. (1997) CD34+-selected autologous peripheral blood stem cell transplantation (PBSCT) in patients with poor-risk hematological malignancies and solid tumors. A single-centre experience. Bone Marrow Transplant. 20, 827–834.PubMedCrossRefGoogle Scholar
  52. 52.
    Stewart, F. M., Crittenden, R. B., Lowry, P. A., Pearson-White, S., and Quesenberry, P. J. (1993) Long-term engraftment of normal and post-5-fluorouracil murine marrow into normal nonmyeloablated mice. Blood 81, 2566–2571.PubMedGoogle Scholar
  53. 53.
    Huhn, R. D., Tisdale, J. F., Agricola, B., Metzger, M. E., Donahue, R. E., and Dunbar, C. E. (1999) Retroviral marking and transplantation of rhesus hematopoietic cells by nonmyeloablative conditioning. Hum Gene Ther 10, 1783–1790.PubMedCrossRefGoogle Scholar
  54. 54.
    Barquinero, J., Kiem, H. P., von Kalle, C., Darovsky, B., Goehle, S., Graham, T., et al. (1995) Myelosuppressive conditioning improves autologous engraftment of genetically marked hematopoietic repopulating cells in dogs. Blood 85, 1195–1201.PubMedGoogle Scholar
  55. 55.
    Bienzle, D., Abrams-Ogg, A. C., Kruth, S. A., Ackland-Snow, J., Carter, R. F., Dick, J. E., et al. (1994) Gene transfer into hematopoietic stem cells: long-term maintenance of in vitro activated progenitors without marrow ablation. Proc. Natl. Acad. Sci. USA 91, 350–354.PubMedCrossRefGoogle Scholar
  56. 56.
    Giralt, S., Khouri, I., and Champlin, R. (1999) Non myeloablative “mini transplants”. Cancer Treat. Res. 101, 97–108.PubMedGoogle Scholar
  57. 57.
    Markowitz, D., Goff, S., and Bank, A. (1988) A safe packaging line for gene transfer: separating viral genes on two different plasmids. J. Virol. 62, 1120–1124.PubMedGoogle Scholar
  58. 58.
    Baum, C., Duellmann, J., Li, Z., Fehse, B., Meyer, J., Williams, D. A., and Von Kalle, C. (2003) Side effects of retroviral gene transfer into hematopoietic stem cells. Blood 101, 2099–2114.PubMedCrossRefGoogle Scholar
  59. 59.
    Hacein-Bey-Abina, S., von Kalle, C., Schmidt, M., Le Deist, F., Wulffraat, N., McIntyre, E., et al. (2003) A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N. Engl. J. Med. 348, 255,256.PubMedCrossRefGoogle Scholar
  60. 60.
    Marshall, E. (2003) Gene therapy. Second child in French trial is found to have leukemia. Science 299, 320.PubMedCrossRefGoogle Scholar
  61. 61.
    Vanin, E. F., Kaloss, M., Broscius, C., and Nienhuis, A. W. (1994) Characterization of replication-competent retroviruses from nonhuman primates with virus-induced T-cell lymphomas and observations regarding the mechanism of oncogenesis. J Virol 68, 4241–4250.PubMedGoogle Scholar
  62. 62.
    Riddell, S. R., Elliott, M., Lewinsohn, D. A., Gilbert, M. J., Wilson, L., Manley, S. A., et al. (1996) T-cell mediated rejection of gene-modified HIV-specific cytotoxic T lymphocytes in HIV-infected patients. Nat. Med. 2, 216–223.PubMedCrossRefGoogle Scholar
  63. 63.
    Kohn, D., Cornetta, K., Brenner, M., Dunbar, C., and Malech, H. (2003) Report from the ASGT Ad Hoc Committee on Retroviral-Mediated Gene Transfer to hematopoietic Stem Cells,

Copyright information

© Humana Press Inc., Totowa, NJ 2004

Authors and Affiliations

  • Frances K. Ngok
    • 1
  • Ronald T. Mitsuyasu
    • 1
  • Janet L. Macpherson
    • 2
  • Maureen P. Boyd
    • 2
  • Geoff P. Symonds
    • 2
  • Rafael G. Amado
    • 1
  1. 1.Department of Medicine and UCLA AIDS InstituteUniversity of CaliforniaLos Angeles
  2. 2.Johnson & Johnson Research Pty LimitedSydneyAustralia

Personalised recommendations