RNAi Expression Vectors in Mammalian Cells

  • Makoto Miyagishi
  • Kazunari Taira
Part of the Methods in Molecular Biology™ book series (MIMB, volume 252)


RNA interference (RNAi) is a recently developed technique for gene silencing by introducing dsRNA into cells, and it is shown to work in mammalian cells when siRNAs are used. Several groups have developed vector-based siRNA expression systems that can induce RNAi in living cells. These vector systems use a pol III promoter, such as U6 or H1, and are classified into two groups based on the form of expressed RNAs: tandem-type and hairpin-type. Here, we describe how to generate these siRNA expression vectors and outline the experimental procedure for suppressing the expression of a reporter gene by transient transfection of a siRNA expression vector.


siRNA Expression Annealed Oligonucleotide siRNA Expression Vector Bacterial Alkaline Phosphatase Effectene Transfection Reagent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Couzin, J. (2002) Breakthrough of the year: small RNAs make big splash. Science 298, 2296.PubMedCrossRefGoogle Scholar
  2. 2.
    Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., and Mello, C. C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811.PubMedCrossRefGoogle Scholar
  3. 3.
    Fire, A. (1999) RNA-triggered gene silencing. Trends Genet. 15, 358–363.PubMedCrossRefGoogle Scholar
  4. 4.
    Hammond, S. M., Caudy, A. A., and Hannon, G. J. (2001) Post-transcriptional gene silencing by double-stranded RNA. Nat. Rev. Genet. 2, 110–119.PubMedCrossRefGoogle Scholar
  5. 5.
    Sharp, P. A. (2001) RNA interference 2001. Genes Dev. 15, 485–490.PubMedCrossRefGoogle Scholar
  6. 6.
    Zamore, P. D. (2001) RNA interference: listening to the sound of silence. Nature Struct. Biol. 8, 746–750.PubMedCrossRefGoogle Scholar
  7. 7.
    Bernstein, E., Caudy, A. A., Hammond, S. M., and Hannon, G. J. (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366.PubMedCrossRefGoogle Scholar
  8. 8.
    Provost, P., Dishart, D., Doucet, J., Frendewey, D., Samuelsson, B., and Radmark, O. (2002) Ribonuclease activity and RNA binding of recombinant human Dicer. EMBO J. 21, 5864–5874.PubMedCrossRefGoogle Scholar
  9. 9.
    Zhang, H., Kolb, F. A., Brondani, V., Billy, E., and Filipowicz, W. (2002) Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J. 21, 5875–5885.PubMedCrossRefGoogle Scholar
  10. 10.
    Nykanen, A., Haley, B., and Zamore, P. D. (2001) ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107, 309–321.PubMedCrossRefGoogle Scholar
  11. 11.
    Hammond, S. M., Boettcher, S., Caudy, A. A., Kobayashi, R., and Hannon, G. J. (2001b) Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293, 1146–1150.PubMedCrossRefGoogle Scholar
  12. 12.
    Tuschl, T. (2002) Expanding small RNA interference. Nature Biotechnol. 20, 446–448.CrossRefGoogle Scholar
  13. 13.
    Caplen, N. J., Parrish, S., Imani, F., Fire, A., and Morgan, R. A. (2001) Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc. Natl. Acad. Sci. USA 98, 9742–9747.PubMedCrossRefGoogle Scholar
  14. 14.
    McManus, M. T. and Sharp, P. A. (2002) Gene silencing in mammals by small interfering RNAs. Nat. Rev. Genet. 3, 737–747.PubMedCrossRefGoogle Scholar
  15. 15.
    Brummelkamp, T. R., Bernards, R., and Agami, R. (2002a) A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553.PubMedCrossRefGoogle Scholar
  16. 16.
    Lee, N. S., Dohjima, T., Bauer, G., Li H., Li, M. J., Ehsani, A., et al. (2002) Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat. Biotechnol. 20, 500–505.PubMedGoogle Scholar
  17. 17.
    Miyagishi, M. and Taira, K. (2002) U6 promoter-driven siRNAs with four-uridine 3′ overhangs efficiently suppress targeted gene expression in mammalian cells. Nat. Biotechnol. 20, 497–500.PubMedCrossRefGoogle Scholar
  18. 18.
    Paddison, P. J., Caudy, A. A., Bernstein, E., Hannon, G. J., and Conklin, D. S. (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Gens Dev. 16, 948–958.CrossRefGoogle Scholar
  19. 19.
    Paul, C. P., Good, P. D., Winer, I., and Engelke, D. R. (2002) Effective expression of small interfering RNA in human cells. Nat. Biotechnol. 20, 505–508.PubMedCrossRefGoogle Scholar
  20. 20.
    Sui, G., Soohoo, C., Affar, el B., Gay, F., Shi, Y., Forrester, W. C., and Shi, Y. (2002) A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl. Acad. Sci. USA 99, 5515–5520.PubMedCrossRefGoogle Scholar
  21. 21.
    Yu, J. Y., DeRuiter, S. L., and Turner, D. L. (2002) RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc. Natl. Acad. Sci. USA 99, 6047–6052.PubMedCrossRefGoogle Scholar
  22. 22.
    Tuschl, T. (2002) Expanding small RNA interference. Nat. Biotech. 20, 446–448.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2004

Authors and Affiliations

  • Makoto Miyagishi
    • 1
  • Kazunari Taira
    • 1
  1. 1.Department of Chemistry and Biotechnology, School of EngineeringThe University of TokyoTokyoJapan

Personalised recommendations