Spermatogonial Stem Cells

  • Karim Nayernia
  • Manyu Li
  • Wolfgang Engel
Part of the Methods in Molecular Biology™ book series (MIMB, volume 253)


Spermatogenesis is a continuous, highly organized process comprised of sequential steps of cell proliferation and differentiation (1). In male mammals, spermatogenesis proceeds for the reproductive lifetime of the animals. The continuation of this process depends on a pool of spermatogonial stem cells within the testes that undergo asymmetric division to both maintain the stem cell population and give rise to progenitors that will proceed through spermatogenesis to generate mature spermatozoa (see Fig. 1A). The male germline proceeds through several developmental steps prior to the establishment and initiation of spermatogonial stem cell division in the testis (2, 3, 4). Primordial germ cells (PGCs) are the founders of the gametes. Progenitors in mice have been recognized in the proximal epiblast (5). The PGCs proliferate and migrate from their site of origin to the future position of the gonad, where they associate with somatic gonadal precursor cells to form the gonad (5). Once within the gonad, the PGCs differentiate in a sex-specific manner, including a distinct program of proliferation and quiescence (see Fig. 1A) (5). In the male genital ridge, the PGCs become enclosed by somatic supporting cells, the precursor Sertoli cells. PGCs and Sertoli cells then, together, form solid strands of cells, which are called seminiferous cords. Later during development, these cords form a lumen and become seminiferous tubules. When the PGCs are enclosed in seminiferous cords, they change morphologically and are then called gonocytes.
Fig. 1A.

(A) Origin of spermatogonial stem cells in prenatal and newborn mice.


Germ Cell Sertoli Cell Seminiferous Tubule Spermatogonial Stem Cell Seminiferous Cord 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Russell, L. D., Ettlin, R. A., Sinha Hikim, A. P., et al. (1990) Mammalian spermatogenesi, in Histological and Histopathological Evaluation of the Testis, Cache River Press, Clearwater, FL, pp. 1–40.Google Scholar
  2. 2.
    Prigle, M. J. and Page, D. C. (1997) Somatic and germ cell sex determination in developing gonad, in Infertility in the Male (Lipshultz, L. I. and Howards, S. S., eds.), Mosby, St. Louis, MO, pp. 3–22.Google Scholar
  3. 3.
    Saffan, E. E. and Lasko, P. (1999) Germline development in vertebrates and invertebrates. Cell Mol. Life Sci. 55, 1141–1163.CrossRefGoogle Scholar
  4. 4.
    Wylie, C. (1999) Germ cells. Cell 100, 157–168.Google Scholar
  5. 5.
    Matsui, Y. (1998). Developmental fates of the mouse germ cell line. Int. J. Dev. Biol. 42, 1037–1042.PubMedGoogle Scholar
  6. 6.
    De Rooij, D. G. and Van Diessel-Emiliani, F. M. F. (1997) Regulation of proliferation and differentiation of stem cells in the male germ line, in Stem Cells (Potten, C. S., ed.), Academic, London, pp. 283–313.CrossRefGoogle Scholar
  7. 7.
    Oakberg, E. F. (1956) A description of spermiogenesis in the mouse and its use in analysis of the cycle of the seminiferous epithelium and germ cell renewal. Am. J. Anat. 99, 391–414.PubMedCrossRefGoogle Scholar
  8. 8.
    De Rooij, D. G. (2001) Proliferation and differentiation of spermatogonial stem cells. Reproduction 121, 347–354.PubMedCrossRefGoogle Scholar
  9. 9.
    Clermont, Y. and Bustos-Obregon, E. (1968) Re-examination of spermatogonial renewal in the rat by means of seminiferous tubules mounted “in toto.”. Am. J. Anat. 122, 237–247.PubMedCrossRefGoogle Scholar
  10. 10.
    Huckins, C. (1971) The spermatogonial stem cell population in adult rats. I. Their morphology, proliferation and maturation. Anat. Rec. 169, 533–557.PubMedCrossRefGoogle Scholar
  11. 11.
    Oakberg, E. F. (1971) Spermatogonial stem-cell renewal in the mouse. Anat. Rec. 169, 515–531.PubMedCrossRefGoogle Scholar
  12. 12.
    Chiarini-Garcia, H. and Russel, L. D. (2001) High resolution light microscopic characterization of mouse spermatogonia. Biol. Reprod. 85, 1170–1178.CrossRefGoogle Scholar
  13. 13.
    Huckins, C. and Oakberg, E. F. (1978) Morphological and quantitative analysis of spermatogonia in mouse testis using whole mounted seminiferous tubules. I. The normal testis. Anat. Rec. 192, 519–528.PubMedCrossRefGoogle Scholar
  14. 14.
    Skinner, M. K. (1991) Cell-cell interactions in the testis. Endocr. Rev. 12, 45–77.PubMedCrossRefGoogle Scholar
  15. 15.
    Jegou, B. (1993) The Sertoli-germ cell communication network in mammals. Int. Rev. Cytol. 147, 25–96.PubMedCrossRefGoogle Scholar
  16. 16.
    Meng, X., Lindahl, M., Hyvönen, M. E., et al. (2000) Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 287, 1489–1493.PubMedCrossRefGoogle Scholar
  17. 17.
    de Rooij, D. G. and Grootegoed, J. A. (1998) Spermatogonial stem cells. Curr. Opin. Cell Biol. 10, 694–701.PubMedCrossRefGoogle Scholar
  18. 18.
    De Rooij, G., Schrans-Stassen, B. H. G. J., von Pelt, A. M. M., et al. (2000) Regulation of the differentiation of the undifferentiated spermatogonia, in The Testis: From Stem Cell to Sperm Function (Goldberg, E., ed.), Springer-Verlag, New York, pp. 43–54.Google Scholar
  19. 19.
    Feng, L. X., Ravindranath, N., and Dym, M. (2000) Stem cell factor/c-kit up-regulates cyclin D3 and promotes cell cycle progression via the phosphoinositide 3-kinase/p70 S6 kinase pathway in spermatogonia. J. Biol. Chem. 275, 25,572–25,576.PubMedCrossRefGoogle Scholar
  20. 20.
    Schrans-Stassen, B. H., Saunders, P. T., Cooke, H. J., et al. (2001) Nature of the spermatogenic arrest in Dazl−/− mice. Biol. Reprod. 65, 771–776.PubMedCrossRefGoogle Scholar
  21. 21.
    Ravink, S. E., Rhee, K., and Wolgemuth, D. J. (1995) Distinct patterns of expression of the D-type cyclins during testicular development in the mouse. Dev. Genet. 16, 171–178.CrossRefGoogle Scholar
  22. 22.
    Sicinski, P., Donaher, I. L., Geng, Y., et al. (1996) Cyclin D2 is an FSH-responsive gene involved in gonadal cell proliferation and oncogenesis. Nature 384, 470–474.PubMedCrossRefGoogle Scholar
  23. 23.
    Tsutsui, T., Hesabi, B., Moons, D. S., et al. (1999) Targeted disruption of CDK4 delays cell cycle entry with enhanced p27Kip1 activity. Mol. Cell. Biol. 19, 7011–7019.PubMedGoogle Scholar
  24. 24.
    van Pelt, A. M. and de Rooij, D. G. (1990) Synchronization of the seminiferous epithelium after vitamin A replacement in vitamin A-deficient mice. Biol. Reprod. 43, 363–367.PubMedCrossRefGoogle Scholar
  25. 25.
    Nishimune, Y., Haneji, G., and Aizawa, S. (1981) Testicular DNA synthesis in vivo: changes in DNA synthesis activity following artificial cryptorchidism and its surgical reversal. Fertil. Steril. 35, 359–362.PubMedGoogle Scholar
  26. 26.
    Ohta, H., Yomogida, K., Tadokoro, Y., et al. (2001) Defect in germ cells, not in supporting cells is the cause of male infertility in the jsd mutant mouse: proliferation of spermatogonial stem cells without differentiation. Int. J. Androl. 24, 15–23.PubMedCrossRefGoogle Scholar
  27. 27.
    de Rooij, D. G., Okabe, M., and Nishimune, Y. (1999) Arrest of spermatogonial differentiation in jsd/jsd, Sl/7H/Sl/7H, and cryptorchid mice. Biol. Reprod. 61, 842–847.PubMedCrossRefGoogle Scholar
  28. 28.
    Dirami, G., Ravindranath, N., Achi, M. V., et al. (2001) Expression of Notch pathway components in spermatogonia and Sertoli cells of neonatal mice. J. Androl. 22, 944–952.PubMedGoogle Scholar
  29. 29.
    Kojika, S. and Griffin, J. D. (2001) Notch receptors and hematopoiesis. Exp. Hematol. 29, 1041–1052.PubMedCrossRefGoogle Scholar
  30. 30.
    Zimmermann, S., Steding, G., Emmen, I. M., et al. (1999) Targeted disruption of the Insl3 gene causes bilateral cryptorchidism. Mol. Endocrinol. 13, 681–691.PubMedCrossRefGoogle Scholar
  31. 31.
    Rassoulzadegan, M., Paquis-Flucklinger, W., Bertino, B., et al. (1993) Transmeiotic differentiation of male germ cells in culture. Cell 75, 997–1006.PubMedCrossRefGoogle Scholar
  32. 32.
    Robertson, E. J. (1987) Embryo-derived stem cell lines, in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach (Robertson, E. J., ed.), IRL, Oxford, pp. 71–112.Google Scholar
  33. 33.
    Meistrich, M. L. and van Beek, M. E. A. B. (1993) Spermatogonial stem cells, in Cell and Molecular Biology of the Testis (Desjardins, C. and Ewing, L. L., eds.), Oxford University Press, New York, pp. 266–295.Google Scholar
  34. 34.
    Orwig, K. E., Shinohara, T., Avarbock, M. R., et al. (2002) Functional analysis of stem cells in the adult rat testis. Biol. Reprod. 66, 944–949.PubMedCrossRefGoogle Scholar
  35. 35.
    Tegelenbosch, R. A. J. and de Rooij, D. G. (1993) A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse. Mutat. Res. 290, 193–200.PubMedCrossRefGoogle Scholar
  36. 36.
    Bellve, A. R., Cavicchia, J. C., Millette, C. F., et al. (1977) Spermatogenic cells of the prepuberal mouse. Isolation and morphological characterization. J. Cell. Biol. 74, 68–85.PubMedCrossRefGoogle Scholar
  37. 37.
    van Pelt, A. M. M., Morena, A. R., van Dissel-Emiliani, F. M. F., et al. (1996) isolation of the synchronized A spermatogonia from adult vitamin A-deficient rat testes. Biol. Reprod. 55, 439–444.PubMedCrossRefGoogle Scholar
  38. 38.
    Shinohara, T., Orwig, K. E., Avarbock, M. R., et al. (2000) Spermatogonial stem cell enrichment by multiparameter selection of mouse testis cells. Proc. Natl. Acad. Sci. USA 97, 8346–8351.PubMedCrossRefGoogle Scholar
  39. 39.
    Shuttlesworth, G. A., de Rooij, D. G., Huhtaniemi, I., et al. (2000) Enhancement of A spermatogonial proliferation and differentiation in irradiated rats by GnRH antagonist administration. Endocrinology 141, 37–49.PubMedCrossRefGoogle Scholar
  40. 40.
    Bellvé, A. R. (1993) Purification, culture, and fractionation of spermatogenic cells, in Methods in Enzymology, Volume 225 (Wassarman, P. M. and Depamphilis, M. L., eds.), Academic, Oxford, pp. 159–261.Google Scholar
  41. 41.
    Shinohara, T., Avarbock, M. R., and Brinster, R. L. (1999) β1-and α6 integrins are surface markers on mouse spermatogonial stem cells. Proc. Natl. Acad. Sci. USA 96, 5504–5509.PubMedCrossRefGoogle Scholar
  42. 42.
    Nagano, M., Avarbock, M. R., Leonida, E. B., et al. (1998) Culture of mouse spermatogonial stem cells. Tissue Cell 30, 389–397.PubMedCrossRefGoogle Scholar
  43. 43.
    Kierszenbaum, A. L. (1994) Mammalian spermatogenesis in vivo and in vitro: a partnership of spermatogenic and somatic cell lineages. Endocr. Rev. 15, 116–134.PubMedGoogle Scholar
  44. 44.
    Kiger, A. A., White-Cooper, H., and Fuller, M. T. (2000) Somatic support cells restrict germline stem cell self-renewal and promote differentiation. Nature 407, 750–753.PubMedCrossRefGoogle Scholar
  45. 45.
    Ogawa, T., Dobrinski, I., Avarbock, M. R., et al. (2000) Transplantation of male germ cell line stem cells restores fertility in infertile mice. Nature Med. 6, 29–34.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2004

Authors and Affiliations

  • Karim Nayernia
    • 1
  • Manyu Li
    • 1
  • Wolfgang Engel
    • 1
  1. 1.Institut für Humangenetik, Zentrum für Hygiene und Humangenetikder Universität GöttingenGöttingenGermany

Personalised recommendations