Mass Spectrometric Characterization of Posttranslationally Modified Proteins—Phosphorylation

  • Martin R. Larsen
Part of the Methods in Molecular Biology™ book series (MIMB, volume 251)


In higher organisms, the majority of proteins are posttranslationally modified at some stage, very often resulting in an essential change in the function of the protein. Some modifications change the protein solubility, others are used as molecular switches and thus modify biological activity, whereas others are used to locate proteins to different cell compartments (e.g., ref. 1). Because a given modification results in a change in the molecular mass of the affected amino acid, mass spectrometry (MS) with its unique sensitivity, high mass accuracy, and its ability to deal with complex mixtures, is the method of choice for characterization of posttranslational modifications (2, 3, 4).


Ethylene Diamine Tetraacetic Acid Graphite Powder Ethylene Diamine Tetraacetic Acid Peptide Mixture Immobilize Metal Affinity Chromatography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Krishna, R. G and Wold, F. (1993) Post-translational modification of proteins. Adv. Enzymol. Relat. Areas Mol. Biol. 67, 265–298.PubMedGoogle Scholar
  2. 2.
    Annan, R. S. and Carr, S. A. (1997) The essential role of mass spectrometry in characterizing protein structure: mapping posttranslational modifications. J. Protein Chem. 16, 391–402.PubMedCrossRefGoogle Scholar
  3. 3.
    Burlingame, A. L. (1996) Characterization of protein glycosylation by mass spectrometry. Curr. Opin. Biotechnol. 7, 4–10.PubMedCrossRefGoogle Scholar
  4. 4.
    Andersen, J. S., Svensson, B., and Roepstorff, P. (1996) Electrospray ionization and matrix assisted laser desorption/ionization mass spectrometry: powerful analytical tools in recombinant protein chemistry. Nat. Biotechnol. 14, 449–457.PubMedCrossRefGoogle Scholar
  5. 5.
    Schreiner, M., Strupat, K., Lottspeich, F., and Eckerskorn, C. (1996) Ultraviolet matrix assisted laser desorption ionization-mass spectrometry of electroblotted proteins. Electrophoresis 17(5), 954–961.PubMedCrossRefGoogle Scholar
  6. 6.
    Eckerskorn, C, Strupat, K., Schleuder, D., et al. (1997) Analysis of proteins by direct-scanning infrared-MALDI mass spectrometry after 2D-PAGE separation and electroblotting. Anal. Chem. 69(15), 2888–2892.PubMedCrossRefGoogle Scholar
  7. 7.
    Haebel, S., Jensen, C, Andersen, S. O., and Roepstorff, P. (1995) Isoforms of a cuticular protein from larvae of the meal beetle, Tenebrio molitor, studied by mass spectrometry in combination with Edman degradation and two-dimensional polyacrylamide gel electrophoresis. Protein Sci. 4, 394–404.PubMedCrossRefGoogle Scholar
  8. 8.
    Loo, J. A., Brown, J., Critchley, G., et al. (1999) High sensitivity mass spectrometric methods for obtaining intact molecular weights from gel-separated proteins. Electrophoresis 20, 743–748.PubMedCrossRefGoogle Scholar
  9. 9.
    Moens, S. and Vanderleyden, J. (1997) Glycoproteins in prokaryotes. Arch. Microbiol. 168, 169–175.PubMedCrossRefGoogle Scholar
  10. 10.
    Varki, A (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3, 97–130.PubMedCrossRefGoogle Scholar
  11. 11.
    Lis, H. and Sharon, N. (1993) Protein glycosylation. Structural and functional aspects. Europ. J. Biochem. 218, 1–27.PubMedCrossRefGoogle Scholar
  12. 12.
    Packer, N. H. and Harrison, M. J. (1998) Glycobiology and proteomics: is mass spectrometry the Holy Grail? Electrophoresis 19(11), 1872–1882.PubMedCrossRefGoogle Scholar
  13. 13.
    Mortz, E., Sareneva, T., Haebel, S., Julkunen, I., and Roepstorff, P. (1996) Mass spectrometric characterization of glycosylated interferon-gamma variants separated by gel electrophoresis. Electrophoresis 17, 925.PubMedCrossRefGoogle Scholar
  14. 14.
    Kuster, B., Wheeler, S. F., Hunter, A. P., Dwek, R. A., and Harvey, D. J. (1997) Sequencing of N-linked oligosaccharides directly from protein gels: in-gel degly-cosylation followed by matrix-assisted laser desorption/ionization mass spectrometry and normal-phase high-performance liquid chromatography. Anal. Biochem. 250(1), 82–101.PubMedCrossRefGoogle Scholar
  15. 15.
    Burlingame, A. L. (1996) Characterization of protein glycosylation by mass spectrometry. Curr. Opin. Biotechnol. 7, 4–10.PubMedCrossRefGoogle Scholar
  16. 16.
    Harvey, D. J., Kuster, B., and Naven, T. J. (1998) Perspectives in the glycosciences—matrix-assisted laser desorption/ionization (MALDI) mass spectrometry of carbohydrates. Glycoconj J. 15, 333–338.PubMedCrossRefGoogle Scholar
  17. 17.
    Graves, J. D. and Krebs, E. G. (1999) Protein phosphorylation and signal transduction. Pharmacol. Ther. 82(2–3), 111–121.PubMedCrossRefGoogle Scholar
  18. 18.
    McLachlin, D. T. and Chait, B. T. (2001) Analysis of phosphorylated proteins and peptides by mass spectrometry. Curr. Opin. Chem. Biol. 5(5), 591–602.PubMedCrossRefGoogle Scholar
  19. 19.
    Gobom, J., Nordhoff, E., Mirgorodskaya, E., Ekman, R., and Roepstorff, P. (1999) Sample purification and preparation technique based on nano-scale reversed-phase columns for the sensitive analysis of complex peptide mixtures by matrix-assisted laser desorption/ionization mass spectrometry. J. Mass Spectrom. 34, 105.PubMedCrossRefGoogle Scholar
  20. 20.
    Larsen, M. R., Cordwell, S. J., and Roepstorff, P. (2002) Graphite powder as an alternative or supplement to reversed-phase material for desalting and concentration of peptide mixtures prior to MALDI mass spectrometry. Proteomics 2, 1277–1287.PubMedCrossRefGoogle Scholar
  21. 21.
    Kussmann, M., Nordhoff, E., Nielsen, H. R., et al. (1997) MALDI-MS sample preparation techniques designed for various peptide and protein analytes. J. Mass Spectrom. 32, 593.CrossRefGoogle Scholar
  22. 22.
    Larsen, M. R., Sorensen, G. L., Fey, S. J., Larsen, P. M., and Roepstorff, P. (2001) Phospho-proteomics: evaluation of the use of enzymatic de-phosphorylation and differential mass spectrometric peptide mass mapping for site specific phosphorylation assignment in proteins separated by gel electrophoresis. Proteomics 1(2), 223–238.PubMedCrossRefGoogle Scholar
  23. 23.
    Neville, D. C, Rozanas, C. R., Price, E. M., Gruis, D. B., Verkman, A. S., and Townsend, R. R. (1997) Evidence for phosphorylation of serine 753 in CFTR using a novel metal-ion affinity resin matrix-assisted laser desorption mass spectrometry. Protein Sci. 6(11), 2436–2445.PubMedCrossRefGoogle Scholar
  24. 24.
    Posewitz, M. C. and Tempst, P. (1999) Immobilized gallium(III) affinity chromatography of phosphopeptides. Anal. Chem. 71, 2883–2892.PubMedCrossRefGoogle Scholar
  25. 25.
    Li, S. and Dass, C. (1999) Iron(III)-immobilized metal ion affinity chromatography and mass spectrometry for the purification and characterization of synthetic phosphopeptides. Anal. Biochem. 270, 9–14.PubMedCrossRefGoogle Scholar
  26. 26.
    Figeys, D., Gygi, S. P., Zhang, Y., Watts, J., Gu, M., and Aebersold, R. (1998) Electrophoresis combined with novel mass spectrometry techniques: powerful tools for the analysis of proteins and proteomes. Electrophoresis 19, 1811–1818.PubMedCrossRefGoogle Scholar
  27. 27.
    Stensballe A., Andersen S., Jensen O. N. (2001) Characterization of phosphoproteins from electrophoretic gels by nanoscale Fe(III) affinity chromatography with off-line mass spectrometry analysis. Proteomics 1(2), 207–222.PubMedCrossRefGoogle Scholar
  28. 28.
    Xhou, W., Merrick, B. A., Khaledi, M. G., and Tomer, K. B. (2000) Detection and sequencing of phosphopeptides affinity bound to immobilized metal ion beads by matrix-assisted laser desorption/ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 11(4), 273–282.CrossRefGoogle Scholar
  29. 29.
    Larsen, M. R. and Roepstorff, P. (2000) Mass spectrometric identification of proteins and characterization of their post-translational modifications in proteome analysis. Fresenius J. Anal. Chem. 366(6–7), 677–690.PubMedCrossRefGoogle Scholar
  30. 30.
    Carr, S. A., Huddleston, M. J., and Annan, R. S. (1996) Selective detection and sequencing of phosphopeptides at the femtomole level by mass spectrometry. Anal. Biochem. 239, 180–192.PubMedCrossRefGoogle Scholar
  31. 31.
    Wilm, M., Neubauer, G., and Mann, M. (1996) Parent ion scans of unseparated peptide mixtures. Anal. Chem. 68(3), 527–533.PubMedCrossRefGoogle Scholar
  32. 32.
    Annan, R. S., Huddleston, M. J., Verma, R., Deshaies, R. J., and Carr, S. A. (2001) A multidimensional electrospray MS-based approach to phosphopeptide mapping. Anal. Chem. 73(3), 393–404.PubMedCrossRefGoogle Scholar
  33. 33.
    Neubauer, G. and Mann, M. (1999) Mapping of phosphorylation sites of gel-isolated proteins by nanoelectrospray tandem mass spectrometry: potentials and limitations. Anal. Chem. 71, 235–242.PubMedCrossRefGoogle Scholar
  34. 34.
    Steen, H., Kuster, B., Fernandez, M., Pandey, A., and Mann, M. (2001) Detection of tyrosine phosphorylated peptides by precursor ion scanning quadrupole TOF mass spectrometry in positive ion mode. Anal. Chem. 73(7), 1440–1448.PubMedCrossRefGoogle Scholar
  35. 35.
    Schlosser, A., Pipkorn, R., Bossemeyer, D., and Lehmann, W. D. (2001) Analysis of protein phosphorylation by a combination of elastase digestion and neutral loss tandem mass spectrometry. Anal Chem. 73(2), 170–176.PubMedCrossRefGoogle Scholar
  36. 36.
    Oda, Y., Nagasu, T., and Chait, B. T. (2001) Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nat. Biotechnol. 19(4), 379–382.PubMedCrossRefGoogle Scholar
  37. 37.
    Zhou, H., Watts, J. D., and Aebersold, R. (2001) A systematic approach to the analysis of protein phosphorylation. Nat. Biotechnol. 19(4), 375–378.PubMedCrossRefGoogle Scholar
  38. 38.
    Powell, K. A., Valova, V. A., Malladi, C. S., Jensen, O. N., Larsen, M. R., and Robinson, P. J. (2000) Phosphorylation of dynamin I on Ser-795 by protein kinase C blocks its association with phospholipids. J. Biol. Chem. 275(16), 11,610–11,617.PubMedCrossRefGoogle Scholar
  39. 39.
    Jellinek, D. A., Chang, A. C, Larsen, M. R., Wang, X., Robinson, P. J., and Reddel, R. R. (2000) Stanniocalcin 1 and 2 are secreted as phosphoproteins from human fibrosarcoma cells. Biochem. J. 350Pt. 2, 453–461.PubMedCrossRefGoogle Scholar
  40. 40.
    Jensen, H. H., Hjerrild, M., Guerra, B., Larsen, M. R., Hojrup, P., and Boldyreff, B. (2001) Phosphorylation of the Fas associated factor FAF1 by protein kinase CK2 and identification of serines 289 and 291 as the in vitro phosphorylation sites. Int. J. Biochem. Cell Biol. 33(6), 577–589.PubMedCrossRefGoogle Scholar
  41. 41.
    Pandey, A., Podtelejnikov, A. V., Blagoev, B., Bustelo, X. R., Mann, M., and Lodish, H. F (2000) Analysis of receptor signaling pathways by mass spectrometry: identification of vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors. Proc. Natl. Acad. Sci. USA 97(1), 179–184.PubMedCrossRefGoogle Scholar
  42. 42.
    Annan, R. S. and Carr, S. A. (1996) Phosphopeptide analysis by matrix-assisted laser desorption time-of-flight mass spectrometry. Anal. Chem. 68, 3413–3421.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Martin R. Larsen
    • 1
  1. 1.Protein Research Group, Department of Molecular Biology and BiochemistryUniversity of Southern DenmarkOdenseDenmark

Personalised recommendations