Advertisement

Microfluidic Removal of Cumulus Cells from Mammalian Zygotes

  • Henry C. Zeringue
  • David J. Beebe
Part of the Methods in Molecular Biology™ book series (MIMB, volume 254)

Abstract

Micron-sized fluid channels have been used for biology-related procedures, such as single-cell manipulation (1, 2, 3), cell deformation (4,5), cell assays (6), and subcellular molecule positioning (7). Owing to laminar fluid flow on this scale, small volumes of fluid can be precisely controlled (8,9). Microfluidic tools allow for the control and manipulation on the size scale of a single embryo (10). Precise microfluidic manipulation can be employed to perform multiple IVP-processing steps (11, 12, 13).

Keywords

Pressure Fluctuation Cumulus Cell Plunger Movement Laminar Fluid Flow Removal Port 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ayliffe, H. E., Rabbitt, R. D. Tresco, P. A., and Frazier, A. B. (1997) Micromachined cellular characterization system for studying the biomechanics of individual cells, in Transducers 97. International Conference on Solid-State Sensors and Actuators. Chicago, IL, IEEE, 1997.Google Scholar
  2. 2.
    Fuhr, G. and Shirley, S. G. (1995) Cell handling and characterization using micron and submicron electrode arrays: state of the art and perspectives of semiconductor microtools. J. Micromech. Microeng. 5, 77–85.CrossRefGoogle Scholar
  3. 3.
    Li, P. C. H. and Harrison, D. J. (1997) Tranport, manipulation, and reaction of biological cells on-chip using electrokinetic effects. Anal. Chem. 69, 1564–1568.PubMedCrossRefGoogle Scholar
  4. 4.
    Tracy, M. C., Greenway, R. S., Das, A.,. Kaye, P. H and Barnes, A. J. (1995) A silicon micromachined device for use in blood deformability studies. IEEE Transactions on Biomedical Engineering 42, 751–761.CrossRefGoogle Scholar
  5. 5.
    Altendorf, E. (1997) Microfabrication-based ektacytometer for blood cell deformability measurements. SPIE 2978, 136–144.CrossRefGoogle Scholar
  6. 6.
    Andersson, P. E., Li, P. C. H., Smith, R., Szarka, R. J., and Harrison, D. J. Biological cell assays on an electrokinetic microchip, in (1997 Int’l Conf. on Solid-State Sensors and Actuators. Chicago, IL, 1997.Google Scholar
  7. 7.
    Takayama, S., Ostuni, E., LeDuc, P., Naruse, K., Ingber, D., and G. M. (2001) Whitesides, Laminar flows: subcellular positioning of small molecules. Nature 411, 1016.PubMedCrossRefGoogle Scholar
  8. 8.
    Brody, J. P., Yager, P., Goldstein, R. E., and Austin, R. (1996) Biotechnology at low reynolds numbers. Biophys. J. 71, 3430–3441.PubMedCrossRefGoogle Scholar
  9. 9.
    Purcell, E. M. (1977) Life at low reynolds number. Am. J. Phys. 45, 3–11.CrossRefGoogle Scholar
  10. 10.
    Glasgow, I., Zeringue, H. C., Beebe, D. J., Choi, S.-J., Lyman, J., Chan, N. G., and Wheeler, M. (2001) Handling individual mammalian embryos using microfluidics. IEEE Trans. Biomed. Eng. 48, 570–578.PubMedCrossRefGoogle Scholar
  11. 11.
    Raty, S., Davis, J. A., Beebe, D. J., Rodriguez-Zas, S. L., and Wheeler, M. B. (2001) Culture in microchannels enhance in vitro embryonic development of pre-implantation mouse embryos. Theriogenology 55, 241.Google Scholar
  12. 12.
    Zeringue, H. C., Wheeler, M. R., and Beebe, D. J. (2001) Removal of cumulus from mammalian zygotes using micro fluidic techniques. Biomed. Microdevices 3, 219–224.CrossRefGoogle Scholar
  13. 13.
    Zeringue, H. C., King, K. R., Glasgow, I. K., Raty, S., Wheeler, M. B. and Beebe, D. J. Zona pellucida removal of mammalian embryos in a microfluidic system, in Micro Total Analysis Systems. Enschede, the Netherlands, 2000.Google Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Henry C. Zeringue
    • 1
  • David J. Beebe
    • 1
  1. 1.Department of Biomedical EngineeringUniversity of Wisconsin-MadisonMadison

Personalised recommendations