Advertisement

In Vitro Fertilization and Embryo Transfer in Felids

  • Charles Earle Pope
Part of the Methods in Molecular Biology™ book series (MIMB, volume 254)

Abstract

The genome of the cat is highly conserved. In fact, of the nonprimate mammalian species in which gene maps are developing, the cat genome exhibits the most similarities to that of the human (1). Biomedical studies in the domestic cat have contributed significantly to our knowledge in the areas of immunology, infectious diseases, genetics, neurophysiology, and cancer (2). Many of the heritable disorders of cats are analogous to those of humans, including hemophilia A and B, polycystic kidney disease, and several lysosomal storage diseases such as mucopolysaccharidosis, α-mannosidosis, and spingomyelinosis C. The close phylogenetic relationship, and the fact that many analogous genetic disorders have been identified and characterized, are important factors that demonstrate the advantages of domestic cats as biomedical research models for human disease when compared to other laboratory animals.

Keywords

Follicle Stimulate Hormone Embryo Transfer Laminar Flow Hood Oocyte Donor Assisted Reproductive Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    O’Brien, S. J., Menotti-Raymond, M., Murphy, W. J., and Nash, N. G. 1999. The promise of comparative genomics in mammals. Science 286, 458–462.Google Scholar
  2. 2.
    Migaki, G. Section VIII, Compendium of inherited metabolic diseases in animals, in Animal Models of Inherited Metabolic Disease (Desnick, R., Patterson, D., and Thompson D. G., eds.), A.R. Liss, New York, 1982, pp. 473–501.Google Scholar
  3. 3.
    Goodrowe, K. L., Walker, S. L., Ryckman, D. P., Mastromonaco, G. F., Hay, M. A., Bateman, H. L., and Waddell, W. T. (2000) Piecing together the puzzle of carnivore reproduction. Anim. Reprod. Sci. 60–61, 389–403.PubMedCrossRefGoogle Scholar
  4. 4.
    Farstad, W. (2000) Current state in biotechnology in canine and feline reproduction. Anim. Reprod. Sci. 60–61, 375–387.PubMedCrossRefGoogle Scholar
  5. 5.
    Luvoni G. C. (2000) Current progress on assisted reproduction in dogs and cats: in vitro embryo production. Reprod. Nutr. Dev. 40, 505–512.PubMedCrossRefGoogle Scholar
  6. 6.
    Pope, C. E. (2000) Embryo technology in conservation efforts for endangered felids. Theriogenology 53, 163–174.PubMedCrossRefGoogle Scholar
  7. 7.
    Goodrowe, K. L., Wall, R. J., O’Brien, S. J., Schmidt, P. M., and Wildt, D. E. (1988) Developmental competence of domestic cat follicular oocytes. Biol. Reprod. 39, 355–372.PubMedCrossRefGoogle Scholar
  8. 8.
    Swanson, W. F., McRae, M. A., Wildt, D. E., and Rall W. F. (1999) Cryoprotectant toxicity and cryopreservation success in IVF-derived cat embryos after embryo transfer. Theriogenology (abstr.) 51, 174.CrossRefGoogle Scholar
  9. 9.
    Swanson, W. F. and Godke, R. A. (1994) Transcervical embryo transfer in the cat. Lab. Anim. Sci. 44, 288–291.PubMedGoogle Scholar
  10. 10.
    Pope, C. E., Keller, G. L., and Dresser, B. L. (1993) In vitro fertilization in domestic and non-domestic cats including sequences of early nuclear events, development in vitro, cryopreservation and successful intra-and interspecies embryo transfer. J. Reprod. Fertil. (Suppl. 47), 189–201.Google Scholar
  11. 11.
    Pope C. E., McRae, M. A., Plair, B. L., Keller, G. L., and Dresser, B. L. (1994) Successful in vitro and in vivo development of in vitro fertilized two-to four-cell cat embryos following cryopreservation, culture and transfer. Theriogenology 42, 513–525.PubMedCrossRefGoogle Scholar
  12. 12.
    Pope, C. E., Johnson, C. A., McRae, M. A., Keller, G. L., and Dresser, B. L. (1998) Development of embryos produced by intracytoplasmic sperm injection of cat oocytes. Anim. Reprod. Scs. 53, 221–236.CrossRefGoogle Scholar
  13. 13.
    Gómez, M. C., Pope, C. E., Harris, R. F., Davis, A., Mikota, S., and Dresser, B. L. (2000) Births of kittens produced by intracytoplasmic sperm injection of domestic cat oocytes matured in vitro. Reprod. Fertil. Dev. 12, 423–433.PubMedCrossRefGoogle Scholar
  14. 14.
    Pope C. E., Johnson, C. A., McRae, M. A., Keller, G. L., and Dresser, B. L. (1995) In vitro and in vivo development of domestic cat oocytes following intracytoplasmic sperm injection or subzonal insemination. Theriogenology (abstr.) 43, 302.CrossRefGoogle Scholar
  15. 15.
    Pope, C. E., McRae, M. A., Plair, B. L., Keller, G. L., and Dresser B. L. (1997) In vitro and in vivo development of embryos produced by in vitro maturation and in vitro fertilization of cat oocytes. J. Reprod. Fertil. Suppl. 51, 69–82.PubMedGoogle Scholar
  16. 16.
    Sojka, N. J., Jennings, L. L., and Hamner C. E. (1970) Artificial insemination in the cat (Felis catus, l). Lab. Anim. Sci. 20, 198–204.PubMedGoogle Scholar
  17. 17.
    Harris, R. F., Gomez, M. C., Leibo, S. P., and Pope C. E. (2002) In vitro development of domestic cat embryos after in vitro fertilization of oocytes with spermatozoa stored for various intervals at 4 C. Theriogenology (abstr.) 57, 365.Google Scholar
  18. 18.
    Dott, H. M. and Foster, G. C. (1975) Preservation of differential staining of spermatozoa by formal citrate. J. Reprod. Fertil. 45, 57–60.PubMedCrossRefGoogle Scholar
  19. 19.
    Harris, R. F., Gomez, M. C., Pope, C. E., Giraldo, A. M. King, A. L., and Dresser, B. L. (2003) Differential staining of trophectoderm and inner cell mass cells of cat in vitro derived blastocysts. Theriogenology (abstr.) 59, 448.Google Scholar
  20. 20.
    Pope, C. E., Gómez, M. C., Harris, R. F., and Dresser, B. L. (2002) Development of in vitro matured, in vitro fertilized cat embryos following cryopreservation, culture and transfer. Theriogenology (abstr.) 57, 464.Google Scholar
  21. 21.
    Swanson, W. F., Roth, T. L., Graham, K., Horohov, D. W., and Godke, R. A. (1996) Kinetics of the humoral immune response to multiple treatments with exogenous gonadotropins and relation to ovarian responsiveness in domestic cats. Am. J. Vet. Res. 57, 302–307.PubMedGoogle Scholar
  22. 22.
    Niwa, K., Ohara, K., Hosoi, Y., and Iritani, A. (1985) Early events of in vitro fertilization of cat eggs by epididymal spermatozoa. J. Reprod. Fertil. 74, 657–660.PubMedCrossRefGoogle Scholar
  23. 23.
    Pope, C. E., Gelwicks, E. J., Wachs, K. B., Keller, G. L., and Dresser B. L. (1989) In vitro fertilization in the domestic cat (Felis catus): A comparison between freshly collected and cooled semen. Theriogenology (abstr.) 32, 241.CrossRefGoogle Scholar
  24. 24.
    Pope, C. E., Gómez, M. C., King, A. L., Harris, R. F., and Dresser, B. L. (2003) Embryos produced in vitro after recovery of oocytes from cat ovaries stored at 4°C for 24 to 28 h retain the competence to develop into live kittens after transfer to recipients. Theriogenology (abstr.) 59, 308.Google Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Charles Earle Pope
    • 1
  1. 1.Audubon Nature Institute Center for Research of Endangered SpeciesNew Orleans

Personalised recommendations