Skip to main content

Analysis of the p53 Status of Tumors

An Overview of Methods

  • Protocol
  • 461 Accesses

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 28))

Abstract

The tumor suppressor gene TP53, encoding the p53 protein, has its gene locus on the short arm of chromosome 17 p13.1 (1,2). p53 has been denoted “guardian of the genome” (3) owing to its essential cellular functions in apoptosis control, cell-cycle control, chromosomal segregation, gene transcription, and genomic stability (4). The gene encodes a protein of 393 amino acids (5). The tertiary structure of the p53 protein is known to a relatively large extent; the DNA binding region has been localized to amino acids 102 to 292. Murine double minute-2 (MDM2) binds to the amino terminal of the p53 protein and is a negative regulator of p53 (6). p53 is normally activated by ultraviolet (UV)-light, radiation, cytostatics, and carcinogens. The activation by these may involve interaction with the ataxia telangiectasia gene (ATM). The p53 gene can be inactivated by somatic or germ-line mutations. Somatic mutations in the p53 gene is the most common genetic abnormality so far described in human cancer (7). Patients with germ-line p53 mutation’s are part of the Li-Fraumeni syndrome. These patients have an increased risk of developing adrenocortical, breast, gastrointestinal tract, and lung carcinoma, as well as soft-tissue sarcoma and malignant melanoma (8,9). Studies on mice have revealed that induced deficiency of both alleles of the p53 gene is associated within an increased risk of lymphomas and sarcomas (10). p53 can also be inactivated by certain viral oncoproteins, such as human papilloma virus protein E6, SV40 large T-antigen, hepatitis B viral X protein, and adenovirus protein E1B (4).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. McBride, O., Merry, D., and Givol, D. (1986) The gene for human p53 cellular tumor antigen is located on chromosome 17 short arm (17p13). Proc. Natl. Acad. Sci. USA 83, 130–134.

    Article  PubMed  CAS  Google Scholar 

  2. Miller, C., Mohandas, T., Wolf, D., Prokocimer, M., Rotter, V., and Koeffler, H. (1986) Human p53 gene localized to short arm of chromosome 17. Nature 319, 783–784.

    Article  PubMed  CAS  Google Scholar 

  3. Lane, D. (1992) p53, guardian of the genome. Nature 358, 15–16.

    Article  PubMed  CAS  Google Scholar 

  4. Harris, C. (1996) Structure and function of the p53 tumor suppressor gene: clues for rational cancer therapeutic strategies. J. Natl. Cancer. Inst. 88, 1442–1455.

    Article  PubMed  CAS  Google Scholar 

  5. Zambetti, G. and Levin, A. (1993) A comparison of the biological activities of wild-type and mutant p53. FASEB J. 7, 855–865.

    PubMed  CAS  Google Scholar 

  6. Kussie, P., Gorina, S., Marechal, V., Elenbaas, B., Moreau, J., Levine, A., and Pavietich, N. (1996) Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274, 948–953.

    Article  PubMed  CAS  Google Scholar 

  7. Schhchtholz, B., Legros, Y., Gillet, D., Gaillard, C., Marty, M., Lane, D., Calvo, F., and Soussi, T. (1992) The immune response to p53 in breast cancer patients is directed against immunodominant epitopes unrelated to the mutational hot spots. Cancer Res. 52, 6380–6384.

    Google Scholar 

  8. Malkin, D., Li, F., Strong, L., Fraumeni Jr, J., Nelson, C., Kim, D., Kassel, J., Gryka, M., Bischoff, F., Tainsky, M. and Friend, S. (1990) Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250, 1233–1238.

    Article  PubMed  CAS  Google Scholar 

  9. Srivastava, S., Zou, Z., Pirollo, K., Blattner, W., and Chang, E. (1990) Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome. Nature 348, 747–749.

    Article  PubMed  CAS  Google Scholar 

  10. Donehower, L., Harvey, M., Slagle, B., McArthur, M., Montogomery Jr., C., Butel, J., and Bradley, A. (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221.

    Article  PubMed  CAS  Google Scholar 

  11. Bergh, J., Norberg, T., Sjögren, S., Lindgren, A. and Holmberg, L. (1995) Complete sequencing of the p53 gene provides prognostic information in breast cancer patients, particularly in relation to adjuvant systemic therapy and radiotherapy. Nature Med. 1, 1029–1034.

    Article  PubMed  CAS  Google Scholar 

  12. Jansson, T., Inganäs, M., Sjögren, S., Norberg, T., Lindgren, A., Holmberg, L. and Bergh, J. (1995) p53 status predicts survival in breast cancer patients treated with or without postoperative radiotherapy: a novel hypothesis based on clinical findings. J. Clin. Oncol. 13, 2745–2751.

    PubMed  CAS  Google Scholar 

  13. Lowe, S., Ruley, H., Jacks, T. and Housman, D. (1993) p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74, 957–967.

    Article  PubMed  CAS  Google Scholar 

  14. Lowe, S., Bodis, S., McClatchey, A., Remington, L., Ruley, H., Fisher, D., Housman, D. and Jacks, T. (1994) p53 status and the efficacy of cancer therapy in vivo. Science 266, 807–810.

    Article  PubMed  CAS  Google Scholar 

  15. Silvestrini, R., Veneroni, S., Benini, E., Daidone, M., Luisi, A., Leutner, M., Maucione, A., Kenda, R., Zucali, R., and Veronesi, U. (1997) Expression of p53, glutathione S-transferase-π, and bcl-2 proteins and benefit from adjuvant radiotherapy in breast cancer. J. Natl. Cancer Inst. 89, 639–645.

    Article  PubMed  CAS  Google Scholar 

  16. Carson, D. and Lois, A. (1995) Cancer progression and p53. Lancet 346, 1009–1011.

    Article  PubMed  CAS  Google Scholar 

  17. Velculescu, V. and El-Deiry, W. (1996) Biological and clinical importance of the p53 tumor suppressor gene. Clin. Chem. 42, 858–868.

    PubMed  CAS  Google Scholar 

  18. Greenblatt, M., Bennett, W., Hollstein, M., and Harris, C. (1994) Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 54, 4855–4878.

    PubMed  CAS  Google Scholar 

  19. Lutzker, S. and Levine, A. (1996) A functionally inactive p53 protein in terato-carcinoma cells is activated by either DNA damage or cellular differentiation. Nature Medicine 2, 804–810.

    Article  PubMed  CAS  Google Scholar 

  20. Chresta, C. and Hickman, J. (1996) Oddball p53 in testicular tumors. Nature Med. 2, 745–746.

    Article  PubMed  CAS  Google Scholar 

  21. Chang, F., Syrjänen, S., and Syrjänen, K. (1995) Implications of the p53 tumorsuppressor gene in clinical oncology. J. Clin. Oncol. 13, 1009–1022.

    PubMed  CAS  Google Scholar 

  22. Sarkis, A., Dalbagni, G., Cordon-Cardo, C., Zhang, Z.-F., Sheinfeld, J., Fair, W., Herr, H., and Reuter, V. (1993) Nuclear overexpression of p53 protein in transitional cell bladder carcinoma: a marker for disease progression. J. Natl. Cancer Inst. 85, 53–59.

    Article  PubMed  CAS  Google Scholar 

  23. Remvikos, Y., Tominaga, 0., Hammel, P., Laurent-Puig, P., Salmon, R., Dutril-laux, B., and Thomas, G. (1992) Increased p53 protein content of colorectal tumours correlates with poor survival. Br. J. Cancer 66, 758–764.

    Article  PubMed  CAS  Google Scholar 

  24. Starzynska, T., Bromley, M., Ghosh, A., and Stern, P. (1992) Prognostic significance of p53 overexpression in gastric and colorectal carcinoma. Br. J. Cancer 66, 558–562.

    Article  PubMed  CAS  Google Scholar 

  25. Martin, H., Filipe, M., Morris, R., Lane, D., and Silvestre, F. (1992) p53 expression and prognosis in gastric carcinoma. Int. J. Cancer 50, 859–862.

    Article  PubMed  CAS  Google Scholar 

  26. Mitsudomi, T., Oyama, T., Kusano, T., Osaki, T., Nakanishi, R., and Shirakusa, T. (1993) Mutations of the p53 gene as a predictor of poor prognosis in patients with non-small-cell lung cancer. J. Natl. Cancer Inst. 85, 2018–2023.

    Article  PubMed  CAS  Google Scholar 

  27. Bosan, S., Viale, G., Radaelli, U., Bossi, P., Bonoldi, E., and Coggi, G. (J993) p53 accumulation in ovarian carcinomas and its prognostic implications. Human Pathol. 24, 1175–1179.

    Article  Google Scholar 

  28. Visakorpi, T., Kallioniemi, O.-P., Heikkinen, A., Koivula, T., and Isola, J. (1992) Small subgroup of aggressive, highly proliferative prostatic carcinomas defined by p53 accumulation. J. Natl. Cancer. Inst. 84, 883–887.

    Article  PubMed  CAS  Google Scholar 

  29. Drobnjak, M., Latres, E., Pollack, D., Karpeh, M., Dudas, M., Woodruff, J., Brennan, M., and Cordon-Cardo, C. (1994) Prognostic implications of p53 nuclear overexpression and high proliferation index of Ki-67 and adult soft-tissue sarcomas. J. Natl. Cancer. Inst. 86, 549–554.

    Article  PubMed  CAS  Google Scholar 

  30. Thor, A., Moore II, D., Edgerton, S., Kawasaki, E., Reibsaus, E., Lynch, H., Marcus, J., Schwartz, L., Chen, L.-C., Mayall, B., and Smith, H. (1992) Accumulation of p53 tumor suppressor gene protein: an independent marker of prognosis in breast cancers. J. Natl. Cancer. Inst. 84, 845–855.

    Article  PubMed  CAS  Google Scholar 

  31. Andersen, T., Holm, Nesland, J., Heimdal, K., Ottestad, L., and Børresen, A.-L. (1993) Prognostic significance of TP53 alterations in breast carcinoma. Br. J. Cancer 68, 540–548.

    Article  PubMed  CAS  Google Scholar 

  32. Elledge, R., Fuqua, S., Clark, G., Pujol, P., Allred, D., and McGuire, W. (1993) Prognostic significance of p53 gene alterations in node-negative breast cancer. Br. Cancer Res. Treat. 26, 225–235.

    Article  CAS  Google Scholar 

  33. Thorlacius, S., Børresen, A., and Eyfjord, J. (1993) Somatic p53 mutations in human breast carcinomas in an Icelandic population: a prognostic factor. Cancer Res. 53, 1637–1641.

    PubMed  CAS  Google Scholar 

  34. Borg, A., Lennerstrand, J., Stenmark-Askmalm, M., Fernö, M., Brisfors, A., Öhrvik, A., Stål, O., Killander, D., Lane, D., and Brundell, J. (1995) Prognostic significance of p53 overexpression in primary breast cancer; a novel luminometric immunoassay applicable on steroid receptor cytosols. Br. J. Cancer 71, 1013–1017.

    Article  PubMed  CAS  Google Scholar 

  35. Elledge, R., Clark, G., Fuqua, S., Yu, Y.-Y., and Alired, D. (1994) p53 protein accumulation detected by five different antibodies: relationship to prognosis and heat shock protein 70 in breast cancer. Cancer Res. 54, 3752–3757.

    PubMed  CAS  Google Scholar 

  36. Børresen, A.-L., Ikdahl Andersen, T., Eyfjord, J., Cornelis, R., Thorlacius, S., Borg, A., Johanson, U., Theillet, C., Scherneck, S., S, H., Cornelisse, C., Hovig, E., and Devilee, P. (1995) TP53 mutations and breast cancer prognosis: particularly poor survival rates for cases with mutations in the zinc-binding domains. Genes Chromosom. Cancer. 14, 71–75.

    Google Scholar 

  37. Silvestrini, R., Benini, E., Daidone, M., Veneroni, S., Boracchi, P., Cappelletti, V., Di Fronzo, G., and Veronesi, U. (1993) p53 as an independent prognostic marker in lymph node-negative breast cancer patients. J. Natl. Cancer. Inst. 85, 965–970.

    Article  PubMed  CAS  Google Scholar 

  38. Levine, A., Momand, J., and Finlay, C. (1991) The p53 tumor suppressor gene. Nature 351, 453–456.

    Article  PubMed  CAS  Google Scholar 

  39. Hsu, I., Metcalf, R., Sun, T., Welsh, J., Wang, N., and Harris, C. (1991) Mutational hotspot in the p53 gene in human hepatocellular carcinoma. Nature 350, 427–428.

    Article  PubMed  CAS  Google Scholar 

  40. Bressac, B., Kew, M., Wands, J., and Ozturk, M. (1991) Selective G to T mutations of p53 gene in hepatocellular carcinoma from Southern Africa. Nature 350, 429–431.

    Article  PubMed  CAS  Google Scholar 

  41. Børresen-Dale, A.-L. (1997) Subgroups of p53 mutations may predict the clinical behaviour of cancers in the breast and colon and contribute to therapy response, in Prognostic and Predictive Value of p53 (Klijn, J., ed.), Elsevier Science BV, Amsterdam, pp. 23–33.

    Google Scholar 

  42. Børresen-Dale, A.-L., Lothe, R., Meling, G., Hainaut, P., Rognum, T., and Skovlund, E. (1997) TP53 and long-term prognosis in colorectal cancer; mutations in the L3 Zn-binding domain predict poor survival. Clin. Cancer Res. 4, 203–210.

    Google Scholar 

  43. Wahl, A., Donaldson, K., Fairchild, C., Lee, F., Foster, S., Demers, W., and Galloway, D. (1996) Loss of normal p53 function confers sensitization to Taxol by increasing G2/M arrest and apoptosis. Nature Med. 2, 72–79.

    Article  PubMed  CAS  Google Scholar 

  44. Hawkins, D., Demers, G., and Galloway, D. (1996) Inactivation of p53 enhances sensitivity to multiple chemotherapeutic agents. Cancer Res. 56, 892–898.

    PubMed  CAS  Google Scholar 

  45. Delia, D., Mizutani, S., Lamorte, G., Goi, K., Iwata, S., and Pierotti, M. (1996) p53 activity and chemotherapy. Nature Med. 2, 724–725.

    Article  PubMed  CAS  Google Scholar 

  46. Xia, F., Wang, X., Wang, Y.-H., Tsang, N.-M., Yandell, D., Kelsey, K., and Liber, H. (1995) Altered p53 status correlates with differences in sensitivity to radiation-induced mutation and apoptosis in two closely related human lymphoblast lines. Cancer Res. 55, 12–15.

    PubMed  CAS  Google Scholar 

  47. Righetti, S., Della Torre, G., Pilotti, S., Menard, S., Ottone, F., Colnaghi, M., Pierotti, M., Lavarino, C., Comarotti, M., Oriana, S., Bohm, S., Bresciani, G., Spatti, G., and Zunino, F. (1996) A comparative study of p53 gene mutations, protein accumulation, and response to cisplatin-based chemotherapy in advanced ovarian carcinoma. Cancer Res. 56, 689–693.

    Google Scholar 

  48. Eliopoulos, A., Kerr, D., Herod, J., Hodgkins, L., Krajewski, S., Reed, J., and Young, L. (1995) The control of apoptosis and drug resistance in ovarian cancer: influence of p53 and Bcl-2. Oncogene 11, 1217–1228.

    PubMed  CAS  Google Scholar 

  49. Aas, T., Børresen, A.-L., Geisler, S., Smith-Sorensen, B., Johansen, H., Varhaug, J., Akslen, L., and Lonning, P. (1996) Specific p53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients. Nature Med. 2, 811–814.

    Article  PubMed  CAS  Google Scholar 

  50. Gronostajski, R., Goldberg, A., and Pardee, A. (1984) Energy requirement for degradation of tumor-associated protein p53. Mol. Cell Biol. 4, 442–448.

    PubMed  CAS  Google Scholar 

  51. Reich, N. and Levine, A. (1984) Growth regulation of a cellular tumour antigen, p53, in nontransformed cells. Nature 308, 199–201.

    Article  PubMed  CAS  Google Scholar 

  52. Finlay, C., Hinds, P., Tan, T.-H., Eliyahu, D., Oren, M., and Levine, A. (1988) Activating mutations for transformation by p53 produce a gene product that forms an hsc70-p53 complex with an altered half-life. Mol. Cell Biol. 8, 531–539.

    PubMed  CAS  Google Scholar 

  53. Iggo, R., Gatter, K., Bartek, J., Lane, D., and Harris, A. (1990) Increased expression of mutant forms of p53 oncogene in primary lung cancer. Lancet 35, 675–679.

    Article  Google Scholar 

  54. Hinds, P., Finlay, C., Quartin, R., Baker, S., Fearon, E., Vogelstein, B., and Levine, A. (1990) Mutant p53 cDNAs from human colorectal carcinomas can cooperate with ras in transformation of primary rat cells: a comparins of the 19hot spot” mutant phenotypes. Cell Growth Diff. 1, 571–580.

    PubMed  CAS  Google Scholar 

  55. Kraggerud, S., Dolven Jacobsen, K., Beern, A., Stokke, T., Holm, R., Smedsharn-mer, L., Børresen-Dale, A.-L., and Fossa, S. (1997) A comparison of different modes for the detection of p53 protein accumulation. Pathol. Res. Pract. 193, 1–8.

    Google Scholar 

  56. Elledge, R. and Aflred, D. (1994) The p53 tumor suppressor gene in breast cancer. Br. Cancer Res. Treat. 32, 39–47.

    Article  CAS  Google Scholar 

  57. Bhargava, V., Thor, A., Deng, G., Ljung, B.-M., Morre II, D., Waldman, F., Benz, C., Goodson III, W., Mayall, B., Chew, K., and Smith, H. (1994) The association of p53 immunopositivity with tumor proliferation and other prognostic indicators in breast cancer. Modern Pathol. 7, 361–368.

    CAS  Google Scholar 

  58. Ikdahl Andersen, T. and Børresen, A.-L. (1995) Alterations of the TP53 gene as a potential prognostic marker in breast carcinomas. Diag. Mol. Pathol. 4, 03–211.

    Google Scholar 

  59. Jacquemier, J., Moles, J., Penault-Llorca, F., Adelaide, J., Torrente, M., Viens, P., Bimbaum, D., and Theillet, C. (1994) p53 immunohistochemical analysis in breast cancer with four monoclonal antibodies: comparison of staining and PCR-SSCP results. Br. J. Cancer 69, 846–852.

    Article  PubMed  CAS  Google Scholar 

  60. Silvestrini, R., Rao, S., Benini, E., Gracia Daidone, M., and Pilotti, S. (1995) Immunohistochemical detection of p53 in clinical breast cancers: A look at methodologic approaches. J. Natl. Cancer. Inst. 87, 1020.

    Google Scholar 

  61. Home, G., Anderson, J., Tiniakos, D., McIntosh, G., Thomas, M., Angus, B., Henry, J., Lennard, T., and Home, C. (1996) p53 protein as a prognostic indicator in breast carcinoma: a comparison of four antibodies for immunohistochemistry. Br. J. Cancer 73, 29–35.

    Article  Google Scholar 

  62. Baas, I., Mulder, J., Offerhaus, G., Vogelstein, B., and Hamilton, 5. (1994) An evaluation of six antibodies for immunohistochemistry of mutant p53 gene product in archival colorectal neoplasmas. J. Pathol. 172, 5–12.

    Article  PubMed  CAS  Google Scholar 

  63. Bodner, S., Minna, J., Jensen, S., D’Amico, D., Carbone, D., Mitsudomi, T., Fedorko, I., Buchhagen, D., Nau, M., Gazdar, A., and Linnoila, R. (1992) Expression of mutant p53 proteins in lung cancer correlates with the class of p53 gene mutation. Oncogene 7, 743–749.

    PubMed  CAS  Google Scholar 

  64. Top, B., Mooi, W., Kiaver, S., Boerrigter, L., Wisman, P., Elbers, U., Visser, S., and Rodenhuis, S. (1995) Comparative analysis of p53 gene mutations and protein accumulation in human non-small-cell lung cancer. Int. J. Cancer. 64, 83–91.

    Article  PubMed  CAS  Google Scholar 

  65. Sjogren, S., Inganas, M., Norberg, T., Lindgren, A., Nordgren, H., Holmberg, L., and Bergh, J. (1996) The p53 gene in breast cancer: prognostic value of complementary DNA sequencing versus immunohistochemistry. J. Natl. Cancer. Inst. 88, 173–182.

    Article  PubMed  CAS  Google Scholar 

  66. Kovach, J., Hartmann, A., Blaszyk, H., Cunningham, J., Schaid, D., and Sommer, S. (1996) Mutation detection by highly sensitive methods indicates that p53 gene mutations in breast cancer can have important prognostic value. Proc. Natl. Acad. Sci. USA 93, 1093–1096.

    Article  PubMed  CAS  Google Scholar 

  67. Elledge, R. (1996) Assessing p53 status in breast cancer prognosis: where should you put the thermometer if you think your p53 is sick? J. Natl. Cancer. Inst. 88, 141–143.

    Article  PubMed  CAS  Google Scholar 

  68. Angelopoulou, K., Diamandis, E., Sutherland, D., Kellen, J., and Buntings, P. (1994) Prevalence of serum antibodies against the p53 tumor suppressor gene protein in various cancers. Int. J. Cancer. 58, 480–487.

    Article  PubMed  CAS  Google Scholar 

  69. Bourhis, J., Lubin, R., Roche, B., Koscielny, S., Bosq, J., Dubois, I., Talbot, M., Marandas, P., Scbwaab, G., Wibault, P., Luboinski, B., Eschwege, F., and Soussi, T. (1996) Analysis of p53 serum antibodies in patients with head and neck squamous cell carcinoma. J. Natl. Cancer. Inst. 88, 1228–1233.

    Article  PubMed  CAS  Google Scholar 

  70. Caron de Fromentel, C., May-Levin, F., Mouriesse, H., Leinerle, J., Chandrase-karan, K., and May, P. (1987) Presence of circulating antibodies against cellular protein p53 in a notable proportion of children with B-cell lymphoma. Int. J. Cancer. 39, 185–189.

    Google Scholar 

  71. Crawford, L., Pim, D., and Bulbrook, R. (1982) Detection of antibodies against the cellular protein p53 in sera from patients with breast cancer. Int. J. Cancer. 30, 403–408.

    Article  PubMed  CAS  Google Scholar 

  72. Davidoff, A., Iglehart, J., and Marks, J. (1992) Immune response to p53 is dependent upon p53/HSP70 complexes in breast cancers. Proc. Natl. Acad. Sci. USA 89, 3439–3442.

    Article  PubMed  CAS  Google Scholar 

  73. Labrecque, S., Naor, N., Thomson, D., and Matlashewski, G. (1993) Analysis of the anti-p53 antibody response in cancer patients. Cancer Res. 53, 3468–3471.

    PubMed  CAS  Google Scholar 

  74. Laurent-Puig, P., Lubin, R., Semhoun-Ducloux, S., Pelletier, G., Fourre, C., Ducreux, M., Briantais, M., Buffet, C., and Soussi, T. (1995) Antibodies against p53 protein in serum of patients with benign or malignant pancreatic and biliary diseases. Gut 36, 455–458.

    Article  PubMed  CAS  Google Scholar 

  75. Lubin, R., Zalcman, G., Bouchet, L., Tre’daniel, J., Legros, Y., Caxals, D., Hirsch, A., and Soussi, T. (1995) Serum p53 antibodies as early markers of lung cancer. Nature Med. 1, 701–702.

    Article  PubMed  CAS  Google Scholar 

  76. Marxsen, J., Schmiegel, W., Roder, C., Harder, R., Juhl, H., Henne-Bruns, D., Kremer, B., and Kaithoff, H. (1994) Detection of the anti-p53 antibody response in malignant and benign pancreatic disease. Br. J. Cancer 70, 1031–1034.

    Article  PubMed  CAS  Google Scholar 

  77. Peyrat, J.-P., Bonneterre, J., Lubin, R., Vanlemmens, L., Fournier, J., and Soussi, T. (1995) Prognostic significance of circulating p53 antibodies in patients undergoing surgery for locoregional breast cancer. Lancet 345, 621–622.

    Article  PubMed  CAS  Google Scholar 

  78. Porzsolt, F., Schmid, M., Ho∼her, D., Muche, R., Gaus, W., and Montenarh, M. (1994) Biologic relevance of auto-antibodies against p53 in patients with metastatic breast cancer. Onkologie. 17, 402–408.

    Article  Google Scholar 

  79. Preudhomme, C., Lubin, R., Lepelley, P., Vannimbeke, M., and Fenaux, P. (1994) Detection of serum anti p53 antibodies and their correlation with p53 mutations in myelodysplastic syndromes and acute mycloid leukemia. Leukemia 8, 1589–1591.

    PubMed  CAS  Google Scholar 

  80. Schlichtholz, B., Tredaniel, J., Lubin, R., Zalcman, G., Hirsch, A. and Soussi, T. (1994) Analyses of p53 antibodies in sera of patients with lung carcinoma define immunodominant regions in the p53 protein. Br. J. Cancer 69, 809–816.

    Article  PubMed  CAS  Google Scholar 

  81. Volkmann, M., Muller, M., Hofmann, W., Meyer, M., Hagelstein, J., Rath, U., Kommerell, B., Zentgraf, H., and Galle, P. (1993) The humoral immune response to p53 in patients with hepatocellular carcinoma is specific for malignancy and independent of the alpha-feto-protein status. Hepatology 18, 559–565.

    PubMed  CAS  Google Scholar 

  82. Wild, C., Ridanpää, M., Anttila, S., Lubin, R., Soussi, T., Husgafvel-Pursiainen, K., and Vainio, H. (1995) p53 antibodies in the sera of lung cancer patients: comparison with p53 mutation in the tumour tissue. Int. J. Cancer. 64, 176–181.

    Article  PubMed  CAS  Google Scholar 

  83. Winter, S., Minna, J., Johnson, B., Takahashi, T., Gazdar, A., and Carbone, D. (1992) Development of antibodies against p53 in lung cancer patients appears to be dependent on the type of p53 mutation. Cancer Res. 52, 4168–4174.

    PubMed  CAS  Google Scholar 

  84. Cotton, R., Rodrigues, N., and Campbell, R. (1988) Reactivity of cytosine and thymine in single-base-pair mismatches with hydroxylamine and osmium tetroxide and its application to the study of mutations. Proc. Natl. Acad. Sci. USA 85, 4397–4401.

    Article  PubMed  CAS  Google Scholar 

  85. Fischer, S. and Lerman, L. (1983) DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc. Natl. Acad. Sci. USA 80, 1579–1583.

    Article  PubMed  CAS  Google Scholar 

  86. Sheffield, V., Cox, D., Lerman, L., and Myers, R. (1989) Attachment of a 40-base-pair G+C-rich sequence (CC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. Proc. Natl. Acad. Sci. USA 86, 232–236.

    Article  PubMed  CAS  Google Scholar 

  87. Børresen, A.-L., Hovig, E., Smith-Sorensen, B., Malkin, D., Lystad, S., Andersen, T., Nesland, J., Isselbacher, K., and Friend, S. (1991) Constant denaturant gel electrophoresis as a rapid screening technique for p53 mutations. Proc. Natl. Acad. Sci. US 88, 8405–8409.

    Article  Google Scholar 

  88. Gibbs, R. and Caskey, C. (1987) Identification and localization of mutations at the Lesch-Nyhan locus by ribonuclease a cleavage. Science., 236, 303–305.

    Google Scholar 

  89. Coles, C., Thompson, A., Elder, P., Cohen, B., Mackenzie, I., Cranston, C., Chetty, U., MacKay, J., MacDonald, M., Nakamura, Y., Hoyheim, B., and Steel, C. (1990) Evidence implicating at least two genes on chromosome 17p in breast carcinogenesis. Lancet 336, 761–763.

    Article  PubMed  CAS  Google Scholar 

  90. Davidoff, A., Humphrey, P., Iglehart, J., and Marks, J. (1991) Genetic basis for p53 overexpression in human breast cancer. Proc. Natl. Acad. Sci. USA 88, 5006–5010.

    Article  PubMed  CAS  Google Scholar 

  91. Singh, S., Simon, M., Meybohm, I., Jantke, I., Jonat, W., Maass, H., and Coedde, H. (1993) Human breast cancer: frequent p53 allele loss and protein over-expression. Human Genet. 90, 635–640.

    Article  CAS  Google Scholar 

  92. Sarkar, G., Yoon, H., and Sommer, 5. (1992) Dideoxy fingerprinting (ddF): a rapid and efficient screen for the presence of mutations. Genomics 13, 441–443.

    Article  PubMed  CAS  Google Scholar 

  93. Hayashi, K. and Yandell, D. (1993) How sensitive is PCR-SSCP? Human Mutat. 2, 338–346.

    Article  CAS  Google Scholar 

  94. Sarkar, G., Yoon, H., and Sommer, S. (1992) Screening for mutations by RNA single-strand conformation polymorphism (rSSCP): comparison with DNA-SSCP. Nucleic Acids Res. 20, 871–878.

    Article  PubMed  CAS  Google Scholar 

  95. Hovig, E., Smith-Sorensen, B., Brogger, A., and Børresen, A.-L. (1991) Constant denaturant gel electrophoresis, a modification of denaturing gradient gel electrophoresis, in mutation detection. Mutation Res. 262, 63–71.

    Article  PubMed  CAS  Google Scholar 

  96. Condie, A., Ecles, R., Børresen, A.-L., Coles, C., Cooper, C., and Prosser, J. (1993) Detection of point mutations in the p53 gene: comparison of single-strand conformation polymorphism, constant denaturant gel electrophoresis, and hydroxylamine and osmium tetroxide techniques. Human Mutat. 2, 58–66.

    Article  CAS  Google Scholar 

  97. Blaszyk, H., Hartmann, A., Schroeder, J., McGovern, R., Soinmer, S., and Kovach, J. (1995) Rapid and efficient screening for p53 gene mutations by dideoxy fingerprinting. BioTechniques 18, 256–260.

    PubMed  CAS  Google Scholar 

  98. Williams, C., Norberg, T., Ahmadian, A., Pontén, F., Bergh, J., Lundeberg, J., and Uhlén, M. (1998) Assessment of sequence-based p53 analysis in human breast cancer: messenger RNA in comparison with genomic DNA targets. Clin. Chem. 44, 455–462.

    PubMed  CAS  Google Scholar 

  99. Stinchcomb, D. (1995) Constraining the cell cycle: Regulating cell division and differentiation by gene therapy. Nature Med. 1, 1004–1006.

    Article  PubMed  CAS  Google Scholar 

  100. Norberg, T., Jansson, T., Sjogren, S., Martensson, C., Andreasson, I., Fjallskog, M.-L., Lindman, H., Nordgren, H., Lindgren, A., Holmberg, L., and Bergh, J. (1996) Overview on human breast cancer with focus on prognostic and predictive factors with special attention on the tumour suppressor gene p53. Acta Oncol. (Suppl 5) 35, 96–102.

    Google Scholar 

  101. Bergh, J. (1997) Determination and use of p53 in the management of cancer patients with special focus on breast cancer: a review, in Prognostic and Predictive Value of p53 (Klijn, J., ed.), Elsevier Science BV, Amsterdam, pp. 35–50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc.

About this protocol

Cite this protocol

Bergh, J. (1999). Analysis of the p53 Status of Tumors. In: Brown, R., Böger-Brown, U. (eds) Cytotoxic Drug Resistance Mechanisms. Methods in Molecular Medicine™, vol 28. Humana Press. https://doi.org/10.1385/1-59259-687-8:179

Download citation

  • DOI: https://doi.org/10.1385/1-59259-687-8:179

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-603-1

  • Online ISBN: 978-1-59259-687-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics