Measurement of P-glycoprotein Function

  • Henk J. Broxterman
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 28)

Abstract

The MDR1-encoded P-glycoprotein (Pgp), when overexpressed in tumor cells, confers resistance to many clinically important classes of anticancer drugs. This phenomenon is called multidrug resistance (MDR). The finding that this gene was expressed in many types of human cancers has stimulated many studies into the relevance of this protein for clinical chemotherapy resistance (1). Pgp is a protein that causes a net transport of substrate drug molecules over the plasma membrane of the cell, resulting in a lowered free cytosolic drug concentration. Therefore, the drug target(s) “feel” a lower drug concentration, resulting in less drug-induced damage and cell-kill. The measurement of the active (adenosine triphosphate [ATP]-dependent) drug transport or efflux function of Pgp is, therefore, a theoretically elegant way to quantify the number of active or “functional” Pgp molecules per cell (2,3). Such assays are called functional assays in this chapter. One disadvantage is, however, that without additional data no unambiguous evidence of the molecular nature of the transport protein is obtained, the advantage is that the relevant biological feature is measured. The latter cannot be derived easily from the mRNA or protein expression levels, because a number of factors may influence the net effect of transporter proteins, such as other membrane properties specific to certain cells (3,4). In practice, important criteria for the usefulness of any MDR assay are its specificity, sensitivity, and reproducibility.

Keywords

Permeability Phenol DMSO Leukemia Shipping 

References

  1. 1.
    Fojo, A. T., Ueda, K., Slamon, D. J., Poplack, D. G., Gottesman, M. M., and Pastan, I. (1987) Expression of multidrug-resistance gene in human tumors and tissues. Proc. Natl. Acad. Sci. USA 84, 265–269.PubMedCrossRefGoogle Scholar
  2. 2.
    Reizenstein, P. (1993) Resistance modifying agents are active in some patients with hematological malignancy. Leukemia Res. 17, 295–298.CrossRefGoogle Scholar
  3. 3.
    Chaudhary, P. M., Mechetner, E. B., and Roninson, I B. (1994) Response. Blood 83, 329–330.Google Scholar
  4. 4.
    Broxterman, H. J., Lankelma, J., Pinedo, H. M., Eekman, C. A., Währer, D. C. R., Ossenkoppele, G. J., and Schuurhuis, G. J. (1997) Theoretical and practical considerations for the measurement of P-glycoprote in function in acute myeloid leukemia. Leukemia 11, 1110–1118.PubMedCrossRefGoogle Scholar
  5. 5.
    Beck, W. T., Grogan, T. M., Willman, C. L., Cordon-Cardo, C. L., Parham, D. M., Kuttesch, J. F., Andreeff, M., Bates, S. E., Berard, C. W., Boyett, J. M., Brophy, N. A., Broxterman, H. J., Chan, H. S. L., Dalton, W. S., Dietel, M., Fojo, A. T., Gascoyne, R. D., Head, D., Houghton, P. J., Srivastava, D. K., Lehnert, M., Leith, C. P., Paietta, E., Pavelic, Z. P., Kimsza, L., Roninson, I. B., Sikic, B. I., Twentyman, P. R., Warnke, R., and Weinstein, R. (1996) Methods to detect P-glycoprotein-associated multidrug resistance in patients’ tumors: consensus recommendations. Cancer Res. 56, 3010–3020.PubMedGoogle Scholar
  6. 6.
    Broxterman, H. J., Lankelma, J., and Pinedo, H. M. (1996) How to probe clinical tumour samples for P-glycoprotein and multidrug resistance-associated protein. Eur. J. Cancer 32A, 1024–1033.PubMedCrossRefGoogle Scholar
  7. 7.
    Broxterman, H. J., Feller, N., Kuiper, C. M., Boven, E., Versantvoort, C. H. M., Teerlink, T., Pinedo, H. M., and Lankelma, J. (1995) Correlation between functional and molecular analysis of mdrl P-glycoprotein in human solid tumor xenografts. Int. J. Cancer 61, 880–886.PubMedCrossRefGoogle Scholar
  8. 8.
    Broxterman, H. J., Schuurhuis, G. J., Lankelma, J., Oberink, J. W., Eekman, C. A., Claessen, A. M. E., Hoekman, K., Poot, M., and Pinedo, H. M. (1997) Highly sensitive and specific detection of P-glycoprotein function for hematological and solid tumor cells using a novel nucleic acid stain. Br. J. Cancer 76, 1029–1034.PubMedCrossRefGoogle Scholar
  9. 9.
    Nooter, K., Sonneveld, P., Oostrurn, R., Herweijer, H., Hagenbeek, T., and Valerio, D. (1990) Overexpression of the mdr1 gene in blast cells from patients with acute myelocytic leukemia is associated with decreased anthracycline accumulation that can be restored by cyclosporin-A. Int. J. Cancer 45, 263–268.PubMedCrossRefGoogle Scholar
  10. 10.
    Schuurhuis, G. J., Broxterman, H. J., Ossenkoppele, G. J., Baak, J. P. A., Eekman, C. A., Kuiper, C. M., Feller, N., van Heyningen, T. H. M., Klumper, E., Pieters, R., Lankelma, J., and Pinedo, H. M. (1995) Functional multidrug resistance phenotype associated with combined overexpression of Pgp/MDR1 and MRP together with 1-β-D-arabinofuranosylcytosine sensitivity may predict clinical response in acute myeloid leukemia. Clin. Cancer Res. 1, 81–93.PubMedGoogle Scholar
  11. 11.
    Feller, N., Kuiper, C. M., Lankelma, J., Ruhdal, J. K., Scheper, R. J., Pinedo, H. M., and Broxterman, H. J. (1995) Functional detection of MDR1/P170 and MRP/P190-mediated multidrug resistance in tumour cells by flow cytometry. Br. J. Cancer 72, 543–549.PubMedCrossRefGoogle Scholar
  12. 12.
    Chaudhary, P. M. and Roninson, I. B. (1991) Expression and activity of P-glycoprotein, a multidrug efflux pump, in human hematopoietic stem cells. Cell 66, 85–94.PubMedCrossRefGoogle Scholar
  13. 13.
    Leith, C. P., Chen, I-M, Kopecky, K. J., Appelbaum, F. R., Head, D. R., Godwin, J. E., Weick, J. K., and Willman, C. L. (1995) Correlation of multidrug resistance (MDR1) protein expression with functional dye/drug efflux in acute myeloid leukemia by multiparameter flow cytometry: identification of discordant MDR/efflux+ and MDR+/efflux cases. Blood 86, 2329–2342.PubMedGoogle Scholar
  14. 14.
    Broxterman, H. J., Sonneveld, P., Feller, N., Ossenlcoppele, G. J., Wahrer, D. C. R., Eekman, C. A., Schoester, M., Lankelma, J., Pinedo, H. M., Löwenberg, B., and Schuurhuis, G. J. (1996) Quality control of multidrug resistance assays in adult acute leukemia: correlation between assays for P-glycoprotein expression and activity. Blood 87, 4809–4816.PubMedGoogle Scholar
  15. 15.
    Ross, D. D., Wooten, P. J., Sridhara, R., Ordóñez, J. V., Lee, E. J., and Schiffer, C. A. (1993). Enhancement of daunorubicin accumulation, retention, and cytotoxicity by verapamil or cyclosporin A in blast cells from patients with previously untreated acute myeloid leukemia. Blood 82, 1288–1299.PubMedGoogle Scholar
  16. 16.
    Noonan, K. E., Beck, C., Holzmayer, T. A., Chin, J. E., Wunder, J. S., Andrulis, I. L., Gazdar, A. F., Willman, C. L., Griffith, B., von Hoff, D. D. and Roninson, I. B. (1990) Quantitative analysis of MDR1 (multidrug resistance) gene expression in human tumors by polymerase chain reaction. Proc. Natl. Acad. Sci. USA 87, 7160–7164.PubMedCrossRefGoogle Scholar
  17. 17.
    Hegewisch-Becker, S., Faltz, C., and Hossfeld, D. K. (1996) Prolongation of medium exchange is associated with a decrease in function but not expression of the P-glycoprotein pump in leukaemic cells. Eur. J. Haematol. 56, 12–22.PubMedCrossRefGoogle Scholar
  18. 18.
    Young, I. T. (1977) Proof without prejudice: use of the Kolmogarov-Smirnov test for the analysis of histograms from flow systems and other sources. J: Histochem. Cytochem. 25, 935–941.Google Scholar
  19. 19.
    Maslak, P., Hegewisch-Becker, S., Godfrey, L., and Andreeff, M. (1994) Flow cytometric determination of the multidrug-resistant phenotype in acute leukemia. Cytometry 17, 84–93.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1999

Authors and Affiliations

  • Henk J. Broxterman
    • 1
  1. 1.Department of Medical OncologyFree University HospitalAmsterdamThe Netherlands

Personalised recommendations