Skip to main content

In Vivo Footprinting Using UV Light and Ligation-Mediated PCR

  • Protocol
Transcription Factor Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 130))

  • 1537 Accesses

Abstract

The analysis of chromatin structure at single-nucleotide resolution (genomic footprinting) has long been considered technically difficult, at least in mammalian cells. Recently, techniques have been developed that give a sufficient specificity and sensitivity to analyze single-copy genes by genomic footprinting (1). The most sensitive method uses ligation-mediated polymerase chain reaction (LMPCR) to amplify all fragments of a genomic sequence ladder (2,3). LMPCR is based on the ligation of an oligonucleotide linker onto the 5′ end of each DNA molecule that was created by a strand cleavage reaction during the footprinting procedure. This ligation reaction provides a common sequence on all 5′ ends allowing exponential PCR to be used for signal amplification. Thus, by taking advantage of the specificity and sensitivity of PCR, one needs only a microgram of mammalian DNA per lane to obtain good quality DNA sequence ladders, with retention of all information relating to DNA methylation, DNA structure, and protein footprints. The general LMPCR procedure is outlined in Fig. 1. The first step of the procedure is cleavage of DNA, generating molecules with a 5′-phosphate group. This is achieved, for example, by chemical DNA sequencing (ß-elimination), by cutting with an enzyme such as DNaseI, or by converting ultraviolet (UV) photolesions into strand breaks. Next, primer extension of a gene-specific oligonucleotide (primer 1) generates molecules that have a blunt end on one side.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saluz, H. P. and Wiebauer, K. (eds.) (1995) DNA and Nucleoprotein Structure In Vivo, R.G. Landes Co., Austin, TX.

    Google Scholar 

  2. Mueller, P. R. and Wold, B. (1989) In vivo footprinting of a muscle specific enhancer by ligation mediated PCR. Science 246, 780–786.

    Article  PubMed  CAS  Google Scholar 

  3. Pfeifer, G. P., Steigerwald, S. D., Mueller, P. R., Wold, B., and Riggs, A. D. (1989) Genomic sequencing and methylation analysis by ligation mediated PCR. Science 246, 810–813.

    Article  PubMed  CAS  Google Scholar 

  4. Pfeifer, G. P., Tanguay, R. L., Steigerwald, S. D., and Riggs, A. D. (1990) In vivo footprint and methylation analysis by PCR-aided genomic sequencing: comparison of active and inactive X chromosomal DNA at the CpG island and promoter of human PGK-1. Genes Dev. 4, 1277–1287.

    Article  PubMed  CAS  Google Scholar 

  5. Ephrussi, A., Church, G. M., Tonegawa, S., and Gilbert, W. (1985) B lineage specific interactions of an immunoglobulin enhancer with cellular factors in vivo. Science 227, 134–140.

    Article  PubMed  CAS  Google Scholar 

  6. Pfeifer, G. P. and Riggs, A. D. (1991) Chromatin differences between active and inactive X chromosomes revealed by genomic footprinting of permeabilized cells using DNaseI and ligation-mediated PCR. Genes Dev. 5, 1102–1113.

    Article  PubMed  CAS  Google Scholar 

  7. Rozek, D. and Pfeifer, G. P. (1993) In vivo protein-DNA interactions at the c-jun promoter: preformed complexes mediate the UV response. Mol. Cell. Biol. 13, 5490–5499.

    PubMed  CAS  Google Scholar 

  8. Chin, P. L., Momand, J., and Pfeifer, G. P. (1997) In vivo evidence for binding of p53 to consensus binding sites in the p21 and GADD45 genes in response to ionizing radiation. Oncogene 15, 87–99.

    Article  PubMed  CAS  Google Scholar 

  9. Pfeifer, G. P., Drouin, R., Riggs, A. D., and Holmquist, G. P. (1991) In vivo mapping of a DNA adduct at nucleotide resolution: detection of pyrimidine (6–4) pyrimidone photoproducts by ligation-mediated polymerase chain reaction. Proc. Natl. Acad. Sci. USA 88, 1374–1378.

    Article  PubMed  CAS  Google Scholar 

  10. Pfeifer, G. P., Drouin, R., Riggs, A. D., and Holmquist, G. P. (1992) Binding of transcription factors creates hot spots for UV photoproducts in vivo. Mol. Cell. Biol. 12, 1798–1804.

    PubMed  CAS  Google Scholar 

  11. Tornaletti, S. and Pfeifer, G. P. (1995) UV-light as a footprinting agent: modulation of UV-induced DNA damage by transcription factors bound at the promoters of three human genes. J. Mol. Biol. 249, 714–728.

    Article  PubMed  CAS  Google Scholar 

  12. Pfeifer, G. P. and Tornaletti, S. (1997) Footprinting with UV irradiation and LMPCR. Methods 11, 189–196.

    Article  PubMed  CAS  Google Scholar 

  13. Komura, J.-I., Sheardown, S. A., Brockdorff, N., Singer-Sam, J., and Riggs, A. D. (1997) In vivo ultraviolet and dimethyl sulfate footprinting of the 5′ region of the expressed and silent Xist alleles. J. Biol. Chem. 272, 10,975–10,980.

    Article  PubMed  CAS  Google Scholar 

  14. Mitchell, D. L., Brash, D. E., and Nairn, R. S. (1990) Rapid repair kinetics of pyrimidine (6–4) pyrimidone photoproducts in human cells are due to excision repair rather than conformational change. Nucleic Acids Res. 18, 963–971.

    Article  PubMed  CAS  Google Scholar 

  15. Pfeifer, G. P. (1997) Formation and processing of UV photoproducts: effects of DNA sequence and chromatin environment. Photochem. Photobiol. 65, 270–283.

    Article  PubMed  CAS  Google Scholar 

  16. Faisst, S. and Meyer, S. (1992) Compilation of vertebrate-encoded transcription factors. Nucleic Acids Res. 20, 3–26.

    Article  PubMed  CAS  Google Scholar 

  17. Becker, M. M. and Wang, J. C. (1984) Use of light for footprinting DNA in vivo. Nature 309, 682–687.

    Article  PubMed  CAS  Google Scholar 

  18. Pfeifer, G. P. and Riggs, A. D. (1993) Genomic sequencing, in Methods in Molecular Biology, DNA Sequencing Protocols, vol. 23 (Griffin, H. and Griffin, A., eds.), Humana Press, Totowa, NJ, pp. 169–181.

    Chapter  Google Scholar 

  19. Türmänen, V. T. and Pfeifer, G. P. (1992) Mapping of UV photoproducts within ras protooncogenes in UV-irradiated cells: correlation with mutations in human skin cancer. Oncogene 7, 1729–1736.

    Google Scholar 

  20. Rychlik, W. and Rhoads, R. E. (1989) A computer program for choosing optimal oligonucleotides for filter hybridization, sequencing and in vitro amplification of DNA. Nucleic Acids Res. 17, 8543–8551.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Pfeifer, G.P., Tommasi, S. (2000). In Vivo Footprinting Using UV Light and Ligation-Mediated PCR. In: Tymms, M.J. (eds) Transcription Factor Protocols. Methods in Molecular Biology™, vol 130. Humana Press. https://doi.org/10.1385/1-59259-686-X:13

Download citation

  • DOI: https://doi.org/10.1385/1-59259-686-X:13

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-573-7

  • Online ISBN: 978-1-59259-686-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics